Rawsamble

Overlapping and Assembling Raw Nanopore Signals Using a Hash-based Seeding Mechanism

Can Firtina

Maximilian Mordig Joel Lindegger

Harun Mustafa

Sayan Goswami

Stefano Mercogliano

Yan Zhu

Andre Kahles

Onur Mutlu

Executive Summary

Problem: Existing solutions **cannot** interpret raw signals directly

if a reference genome is unknown or does not exist

Goal: Enable raw signal analysis without a reference genome

Key Contributions:

- 1. Rawsamble: The first mechanism that can find all-vs-all overlapping pairs between raw nanopore signals
- 2. The first *de novo* assembly constructed directly from raw signal overlaps without basecalling
- 3. A new assembler to build and output the assemblies of signals

Key Results: Across 3 genomes of varying sizes, Rawsamble provides

- **Throughput:** $139 \times -1031 \times$ faster with one thread compared to a single pore
- Overlap statistics: 37% of overlapping pairs shared with minimap2
- Assembly: Unitigs of length up to one million nucleotides from overlapping raw signals without basecalling

Outline

Background

Rawsamble Mechanism

Evaluation

Conclusion

Nanopore Sequencing

Nanopore Sequencing: a widely used sequencing technology

- Can sequence large fragments of nucleic acid molecules (up to ~4Mbp)
- Offers high throughput
- Cost-effective

Nanopore Sequencing

Raw Signals: Ionic current measurements generated at a certain throughput

(Real-Time) Analysis: Signals can be analyzed while they are generated

Real-Time Decisions: Stopping sequencing early based on real-time analysis

Analyzing Raw Nanopore Signals

Traditional: Translating (basecalling) signals to bases before analysis

Basecalled sequences are less noisy than raw signals

Many analysis tools use basecalled sequences

Costly and power-hungry computational requirements

Recent Work: Directly analyzing signals **without basecalling**

Efficient analysis with better scalability and portability

Raw signals retain more information than just bases

Lack of established tools for downstream analysis

SAFARI

The State-of-the-Art Raw Signal Mapper

The State-of-the-Art Raw Signal Mapper

Existing solutions cannot analyze raw signals directly without a reference genome

Beyond Reference Mapping: Overlapping

Beyond Reference Mapping: Overlapping

Challenge #1: Identifying accurate matches when **both** signals are noisy

Challenge #2: Finding all overlapping read pairs

Beyond Reference Mapping: Overlapping

Challenge #1: Identifying accurate matches when **both** signals are noisy

Challenge #2: Finding all overlapping read pairs

Challenge #3: Generating long paths from many overlaps to build assemblies

Outline

Background

Rawsamble Mechanism

Evaluation

Conclusion

Goal

Enable raw signal analysis without a reference genome

The first mechanism that can quickly and accurately find all-vs-all overlapping of raw signals

The first *de novo* assembly constructed directly from raw signal overlaps without basecalling

A new assembler to build and output the assemblies from raw signals

Rawsamble Key Ideas

Build on the existing state-of-the-art raw signal mapper: **RawHash**

Extend RawHash to support overlapping

RawHash Overview

Rawsamble Overview

Indexing using Raw Signals

- Building the index directly from raw signals
 - Free from the conversion table used while converting the sequences to signals

- Converted signals are filtered aggressively:
 - To avoid nanopore-related errors better
 - Based on the similarity between adjacent signals

Chaining and Outputting Overlaps

- Adjusting the minimum chaining score to avoid false chains
 - All-vs-all overlapping tends to find a larger number of seed hits than mapping to a reference genome
 - Minimum score for a chain during overlapping is set to be
 ~5× larger than mapping

- Adjusting the outputting strategy for accurate assembly
 - **All chains are reported** to enable a raw signal overlapping with many raw signals (all-vs-all)
 - **Cyclic overlaps are avoided** with simple comparisons between read names (minimap2 strategy)

Outline

Background

Rawsamble Mechanism

Evaluation

Conclusion

Evaluation Methodology

- Compared to minimap2 overlaps (forward strand only) [Li, Bioinformatics'18]
 - Rawsamble is integrated into RawHash2 [Firtina+, ISMB/ECCB'23, Firtina+, arXiv]
- Use case(s) for raw signal overlapping
 - 1. *De novo* assembly construction using miniasm [Li, Bioinformatics'16]
 - 2. More new directions to be discussed
- Evaluation metrics:
 - Throughput (bases processed per second per CPU thread) and overall time
 - **Percentage of shared and unique overlapping pairs** between tools
 - Assembly statistics

Datasets:

	Organism	Flow Cell	Reads (#)	Bases (#)	SRA Acc.
D1	E. coli	R9.4	353,317	2,365M	ERR9127551
D2	Yeast	R9.4	49,989	380M	SRR8648503
D3	Human	R9.4	269,507	1,584M	FAB42260 (ONT)

Performance & Peak Memory

Organism	Tool	CPU time (hh:mm:ss)	Peak Memory (GB)	Throughput (bp/sec)
D1	Rawsamble	4:06:44	14.98	95,626
E. coli	minimap2	0:20:32	30.66	NA
D2	Rawsamble	0:05:39	9.87	62,548
Yeast	minimap2	0:00:35	5.74	NA
D3	Rawsamble	0:15:14	18.04	463,973
Human	minimap2	0:02:05	18.68	NA

Although minimap2 is substantially faster,

Rawsamble avoids the basecalling step

- Real-time analysis requires faster throughput than sequencer
 - Throughput of a single nanopore: ~450 bp/sec (data generation speed)

139× - 1031× faster throughput with a single CPU thread

compared to a single pore

All-vs-All Overlapping Statistics

- Percentage of overlapping pairs
 - Shared between Rawsamble and minimap2
 - Unique to either Rawsamble or minimap2

On average, **37.12%** of overlapping pairs is **shared** with minimap2

How can we evaluate the impact of these ratios?

De novo Assembly From Overlaps

- **Goal:** To build long *de novo* assemblies from raw signal overlaps
 - Miniasm can be used off-the-shelf as both tools provide PAF outputs

Organism	Tool	N50 Unitig Length	Avg. Unitig Length	Max. Unitig Length	No. of unitigs
D1	Rawsamble minimap2	543,505	373,594	1,431,572	39
E. coli		5,210,589	2,611,044	5,210,938	4
D2	Rawsamble	60,605	47,250	256,116	431
Yeast	minimap2	122,735	82,757	386,005	278
D3	Rawsamble	23,717	16,376	66,163	59
Human	minimap2	18,128	10,572	42,654	53

Raw signal overlaps can be used for

constructing de novo assemblies without basecalling

Overlaps from minimap2 lead to longer unitigs

mainly due to using less noisy sequencing data

De novo Assembly From Overlaps

Visualizing the miniasm outputs with Bandage [Wick+, Bioinformatics'15]

Minimap2 (Yeast):

Rawsamble (Yeast):

Unitigs can be assembled into long components using raw signals

New Directions in Raw Signal Analysis

Constructing (and analyzing) de novo assemblies

Utilizing the overlap information for more accurate basecalling

Utilizing the constructed assembly for basecalling

Rawsamble

Source code

 <u>Can Firtina</u>, Maximilian Mordig, Joël Lindegger, Harun Mustafa, Sayan Goswami, Stefano Mercogliano, Yan Zhu, Andre Kahles, and Onur Mutlu,

"Rawsamble: Overlapping and Assembling Raw Nanopore Signals using a Hash-based Seeding Mechanism"

32nd Annual Conference on Intelligent Systems for Molecular Biology (ISMB), Jul 2024

Source Code

[Preprint to be available soon]

Rawsamble: Overlapping and Assembling Raw Nanopore Signals using a Hash-based Seeding Mechanism

Can Firtina¹ Maximilian Mordig^{1,2} Joël Lindegger¹ Harun Mustafa^{1,3,4} Sayan Goswami¹ Stefano Mercogliano¹ Yan Zhu^{1,5} Andre Kahles^{1,3,4} Onur Mutlu¹

¹ETH Zurich ²Max Planck Institute for Intelligent Systems ³University Hospital Zurich

⁴Swiss Institute of Bioinformatics ⁵University of Toronto

Rawasm: Raw Signal Assembler [Beta]

- Slightly modified version of miniasm
 - To output assembled raw signals instead of basecalled sequences
- Supports all major raw signal file formats
 - FAST5, POD5, S/BLOW5 file formats
- Still in a testing phase:
 Feedback is appreciated!

https://github.com/CMU-SAFARI/rawasm

Outline

Background

Rawsamble Mechanism

Evaluation

Conclusion

Conclusion

Key Contributions:

- 1. Rawsamble: The first mechanism that can find all-vs-all overlapping pairs between raw nanopore signals
- 2. The first *de novo* assembly constructed directly from raw signal overlaps without basecalling
- **3.** A new assembler to build and output the assemblies of signals

Key Results: Across 3 genomes of varying sizes, Rawsamble provides

- **Throughput:** $139 \times -1031 \times$ faster with one thread compared to a single pore
- Overlap statistics: 37% of overlapping pairs shared with minimap2
- Assembly: Unitigs of length up to one million nucleotides from overlapping raw signals without basecalling

Many opportunities for analyzing raw nanopore signals:

- Indexing is very cheap: Many future use cases with the on-the-fly index construction
- We should rethink the algorithms to perform downstream analysis fully using raw signals
- We should rethink the basecalling approaches to integrate information from raw signal analysis

Rawsamble

Overlapping and Assembling Raw Nanopore Signals Using a Hash-based Seeding Mechanism

Can Firtina

Maximilian Mordig Joel Lindegger

Harun Mustafa

Sayan Goswami

Stefano Mercogliano

Yan Zhu

Andre Kahles

Onur Mutlu

Backup Slides

Future Work

Reverse Complementing Raw Nanopore Signals

• Without reverse complementing, we are missing half of the useful information

Dynamically Building the Hash Table in Real-Time

- Needed for real-time *de novo* assembly construction
- What are the useful applications for real-time de novo assembly construction?

Real-Time Mapping using Hash-based Indexing

Sketching with Hash-based Indexing

Seeding

Determine potential matching regions (seeds) in the reference genome

Seed Filtering (e.g., Chaining)

Prune some seeds in the reference genome

Alignment

Determine the exact differences between the read and the reference genome

Existing Solutions – Real-time Basecalling

Deep neural networks (**DNNs**) for translating **signals** to **bases**

DNNs provide less noisy analysis from basecalled sequences

Costly and power-hungry computational requirements

Applications of Read Until

Depletion: Reads mapping to a particular reference genome is ejected

- Removing contaminated reads from a sample
- Relative abundance estimation
- Controlling low/high-abundance genomes in a sample
- Controlling the sequencing of depth of a genome

Enrichment: Reads not mapping to a particular reference genome is ejected

- Purifying the sample to ensure it contains only the selected genomes
- Removing the host genome (e.g., human) in contamination analysis

Rawsamble

Overlapping and Assembling Raw Nanopore Signals Using a Hash-based Seeding Mechanism

Can Firtina

Maximilian Mordig Joel Lindegger

Harun Mustafa

Sayan Goswami

Stefano Mercogliano

Yan Zhu

Andre Kahles

Onur Mutlu

