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Brief Self Introduction

= Can Firtina
o Senior Ph.D. student in the SAFARI Research Group at ETH Zurich|

= Research interests: Bioinformatics & Computer Architecture
o Real-time genome analysis

Similarity search in a large space of genomic data

Hardware-Algorithm co-design to accelerate genome analysis

Genome editing

Error correction
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= Get to know our group and our research
o  Group website: https://safari.ethz.ch/
o Contact me: canfirtina@gmail.com
o Website: https://cfirtina.com
o Twitter (aka X): https://twitter.com/FirtinaC
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Professor Mutlu

Onur Mutlu

Full Professor @ ETH Zurich ITET (INFK), since September 2015
Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...
PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
https://people.inf.ethz.ch/omutlu/

omutlu@gmail.com (Best way to reach)
https://people.inf.ethz.ch/omutlu/projects.htm

o 0o 0o 0 o0 O

Research and Teaching in:

Computer architecture, computer systems, hardware security, bioinformatics
Memory and storage systems

Hardware security, safety, predictability

Fault tolerance

Hardware/software cooperation

Architectures for bioinformatics, health, medicine

o 0o 0o 0 o O
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SAFARI Research Group

Computer architecture, HW/SW, systems, blomformatlcs securlty, memory

SAFARI httDs://safarl.ethz.ch
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Four Key Current Directions

Fundamentally Secure/Reliable/Safe Architectures

Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

Fundamentally Low-Latency and Predictable Architectures

Algorithms & Architectures for AI/ML, Genomics, Medicine

SAFARI .



Agenda for Today

Cutting-edge in Accelerating Genome Analysis

Enabling Fast and Accurate Real-time Analysis
o RawHash and RawHash2

Conclusion

SAFARI



The Goal of Computing: Beyond Numbers

“The purpose of COIT) putlng is [to gain]
insig ht, not numbers”

Richard Hamming

SAFARI "Numerical Methods for Scientists and Engineers," Richard Hamming, 1962. 7



https://safari.ethz.ch/digitaltechnik/lib/exe/fetch.php?media=numerical.methods.for.scientists.and.engineers_2ed_hamming_0486652416.pdf

We need to gain insights
and observations
much more efficiently
than ever before

SAFARI



Big Data 1s Everywhere

£ W

Astronomy Twitter (now X)
25 zetta-bytes/year 0.5-15 billion tweets/year

\

YouTube Genomics
500-900 million hours/year 1 zetta-bases/year

SAFARI  "Big data: astronomical or genomical?”, PLoS biology, 2015.



https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002195

Problems with Data Analysis Today

\ J..\ %
/'

Special-Purpose Machine General-Purpose Machine
for Data Generation for Data Analysis

FAST SLOW

Slow and inefficient processing capability
Large amounts of data movement

SAFARI
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Data Movement Dominates Performance

= Data movement dominates performance and is a major
system energy bottleneck (accounting for 40%-62%)

Data Movement

o
o\

Sequencing Storage (SSD/HDD) Main Memory Microprocessor
Machine

Single memory request consumes >160x-800x more
energy compared to performing an addition operation

* Boroumand et al., “"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks,” ASPLOS 2018
* Kestor et al., “Quantifying the Energy Cost of Data Movement in Scientific Applications,” IISWC 2013
* Pandiyan and Wu, “Quantifying the energy cost of data movement for emerging smart phone workloads on mobile platforms,” IISWC 2014
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We need intelligent algorithms
and intelligent architectures
that handle data well
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Pushing Towards New Architectures
FPGAs _

Modern systems

i v -.‘:‘:: ? ‘t‘t

Sequencing
Machine

Heterogeneous
Processors and
Accelerators

Persistent Memory/Storage
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Pushing Towards New Architectures

FPGAs

Modern systems

uencing
Machine

COEN Persistent Memory/Storage
(General Purpose) GPUs

SAFARI https://nanoporetech.com/products/smidgion 14
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Accelerating Genome Analysis [pac 2023

Onur Mutlu and Can Firtina,

"Accelerating Genome Analysis via Algorithm-Architecture Co-Design"
Invited Special Session Paper in Proceedings of the 60th Design Automation
Conference (DAC), San Francisco, CA, USA, July 2023.

[Slides (pptx) (pdf)]

[Talk Video (38 minutes, including Q&A)]

[Related Invited Paper]

[arXiv version]

Accelerating Genome Analysis
via Algorithm-Architecture Co-Design

Onur Mutlu Can Firtina
ETH Ziirich

SAFARI https:/ /ieeexplore.ieee.org/document/10247887 15


https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.dac.com/
https://www.dac.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pdf
https://www.youtube.com/watch?v=osg9su2FDr8
https://ieeexplore.ieee.org/document/10247887
https://arxiv.org/pdf/2305.00492.pdf

Algorithm-Arch-Device Co-Design 1s Critical

Computer Architecture SW/HW Interface

(expanded view)

SAFARI 16



Applications
are only limited
by our imagination

SAFARI



Genome Editing

The Nobel Prize in Chemistry 2020

awarded "for the development of a
method of genome editing"

SAFARI nttps://www.nobelprize.org/prizes/chemistry/2020/press-release/

18
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DNA Computing

g \ G
Los Angeles / ,/ TR [__Miami__|[ New York |
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Massive parallelism to solve
(hard) problems!

SAFARI https://electronicsforyou.in/seminar-report-on-dna-computing/ 19



https://electronicsforyou.in/seminar-report-on-dna-computing/

New Genome Sequencing Technologies

Nanopore sequencing technology and tools for genome assembly:
computational analysis of the current state, bottlenecks and
future directions

Damla Senol Cali ™, Jeremie S Kim, Saugata Ghose, Can Alkan, Onur Mutlu

Briefings in Bioinformatics, bby017, https://doi.org/10.1093/bib/bby017
Published: 02 April2018 Article history v

Oxford Nanopore MinION

Senol Cali+, "Nanopore Sequencing Technology and Tools for Genome
Assembly: Computational Analysis of the Current State, Bottlenecks
and Future Directions,” Briefings in Bioinformatics, 2018.

[Open arxiv.org version]

SAFARI 20
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New Frontiers: Raw Signal Analysis [ISMB 2023]

= Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh,
Meryem Banu Cavlak, Haiyu Mao, and Onur Mutlu,
"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for
Large Genomes"
Proceedings of the 31st Annual Conference on Intelligent Systems for Molecular Biology (ISMB) and
the 22nd European Conference on Computational Biology (ECCB), Jul 2023
[Bioinformatics Journal version]
[Slides (pptx) (pdf)]
[RawHash Source Code]

Bioinformatics, 2023, 39, i297-i307
https://doi.org/10.1093/bioinformatics/btad272

ISMB/ECCB 2023

OXFORD

RawHash: enabling fast and accurate real-time analysis of

raw nanopore signals for large genomes

Can Firtina ® "*, Nika Mansouri Ghiasi ® ', Joel Lindegger ® ', Gagandeep Singh ® 7,
Meryem Banu Cavlak ® 7, Haiyu Mao ® ', Onur Mutlu ® **

'Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland

*Corresponding author. Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
E-mail: firtinac@ethz.ch (C.F.), omutlu@ethz.ch (0.M.)
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https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://www.iscb.org/ismbeccb2023-programme/proceedings
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pdf
https://github.com/CMU-SAFARI/RawHash

Fast and Accurate Real-Time Genome Analysis

Can Firtina, Melina Soysal, Joel Lindegger, and Onur Mutlu,
"RawHash2: Mapping Raw Nanopore Signals Using Hash-Based
Seeding and Adaptive Quantization”

Preprint on arXiv, September 2023.

[arXiv version]

[RawHash2 Source Code]

RawHash2: Mapping Raw Nanopore Signals

Using Hash-Based Seeding and Adaptive Quantization

Can Firtina Melina Soysal Joél Lindegger Onur Mutlu
ETH Ziirich

SAFARI 22


https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/pdf/2309.05771.pdf
https://arxiv.org/abs/2309.05771
https://github.com/CMU-SAFARI/RawHash

Fast and Accurate Real-Time Genome Analysis

Joel Lindegger, Can Firtina, Nika Mansouri Ghiasi, Mohammad Sadrosadati,
Mohammed Alser, and Onur Mutly,

'RawAlign: Accurate, Fast, and Scalable Raw Nanopore Signal

Mapping via Combining Seeding and Alignment"
Preprint on arXiv, October 2023.

[arXiv version]
[RawAlign Source Code]

RawAlign: Accurate, Fast, and Scalable Raw Nanopore Signal
Mapping via Combining Seeding and Alignment

Joél Lindegger® Can Firtina’ Nika Mansouri Ghiasi®
Mohammad Sadrosadati® Mohammed Alser® Onur Mutlu$
SETH Ziirich

SAFARI 23


https://arxiv.org/pdf/2310.05037.pdf
https://arxiv.org/pdf/2310.05037.pdf
https://arxiv.org/abs/2310.05037
https://github.com/CMU-SAFARI/RawAlign

Machine Learning in Genomics

M. Banu Cavlak, Gagandeep Singh, Mohammed Alser, Can Firtina, Joel Lindegger,
Mohammad Sadrosadati, Nika Mansouri Ghiasi, Can Alkan, and Onur Mutlu,

'TargetCall: Eliminating the Wasted Computation in Basecalling via Pre-

Basecalling Filtering"
Proceedings of the 21st Asia Pacific Bioinformatics Conference (APBC), Changsha,

China, April 2023.

[TargetCall Source Code]

[arxiv.org Version]

[Talk Video at BIO-Arch 2023 Workshop]

TargetCall: Eliminating the Wasted Computation in Basecalling
via Pre-Basecalling Filtering

Meryem Banu Cavlak! Gagandeep Singh! Mohammed Alser! Can Firtina! Joél Lindegger!
Mohammad Sadrosadati! Nika Mansouri Ghiasi! Can Alkan? Onur Mutlu!
LETH Ziirich 2Bilkent University

SAFARI  https://arxiv.org/pdf/2301.09200.pdf 24



https://arxiv.org/pdf/2212.04953.pdf
https://arxiv.org/pdf/2212.04953.pdf
http://bioinformatics.csu.edu.cn/APBC2023/
https://github.com/cmu-safari/targetcall
https://arxiv.org/abs/2212.04953
https://www.youtube.com/watch?v=2rCsb4-nLmg&t=21973s
https://arxiv.org/pdf/2301.09200.pdf

Genome Similarity Identification [NARGAB 2023]

= Can Firtina, Jisung Park, Mohammed Alser, Jeremie S. Kim, Damla Senol Cali, Taha
Shahroodi, Nika Mansouri Ghiasi, Gagandeep Singh, Konstantinos Kanellopoulos, Can

Alkan, and Onur Mutlu,

"BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy

Seed Matches in Genome Analysis"
NAR Genomics and Bioinformatics, March 2023.

[Online link at NAR Genomics and Bioinformatics Journal]

[arXiv preprint]

[biorXiv preprint]

[BLEND Source Code]

AR,

Volume 5, Issue 1
March 2023

JOURNAL ARTICLE

BLEND: a fast, memory-efficient and accurate
mechanism to find fuzzy seed matches in genome
analysis d

Can Firtina ™, Jisung Park, Mohammed Alser, Jeremie S Kim, Damla Senol Cali,

Taha Shahroodi, Nika Mansouri Ghiasi, Gagandeep Singh, Konstantinos Kanellopoulos,
Can Alkan, Onur Mutlu

NAR Genomics and Bioinformatics, Volume 5, Issue 1, March 2023, l[qad004,

SAFARI
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https://arxiv.org/pdf/2112.08687.pdf
https://arxiv.org/pdf/2112.08687.pdf
https://academic.oup.com/nargab
https://doi.org/10.1093/bioinformatics/btac554
https://arxiv.org/abs/2112.08687
https://doi.org/10.1101/2022.11.23.517691
https://github.com/CMU-SAFARI/BLEND

New Applications: Frequent Database Updates

Jeremie S. Kim*, Can Firtina*, M. Banu Cavlak, Damla Senol Cali, Nastaran
Hajinazar, Mohammed Alser, Can Alkan, and Onur Mutlu,

"AirLift: A Fast and Comprehensive Technique for Remapping
Alignments between Reference Genomes"

Proceedings of the 21st Asia Pacific Bioinformatics Conference (APBC),
Changsha, China, April 2023.

[AirLift Source Code]

[arxiv.org Version (pdf)]

[Talk Video at BIO-Arch 2023 Workshop]

METHOD

AirLift: A Fast and Comprehensive Technique

for Remapping Alignments between Reference
Genomes

Jeremie S. Kim1T, Can Firtinalf, Meryem Banu Cavlak?, Damla Senol Cali3, Nastaran Hajinazarl#,
Mohammed Alser!, Can Alkan? and Onur Mutlu!23*

SAFARI *Equal contribution 20


https://arxiv.org/pdf/1912.08735.pdf
https://arxiv.org/pdf/1912.08735.pdf
http://bioinformatics.csu.edu.cn/APBC2023/
https://github.com/CMU-SAFARI/AirLift
https://arxiv.org/pdf/1912.08735.pdf
https://www.youtube.com/watch?v=nJKJK15t5YM

Error Correction using ML [Bioinform. 2020}

= Can Firtina, Jeremie S. Kim, Mohammed Alser, Damla Senol Cali, A. Ercument
Cicek, Can Alkan, and Onur Mutlu,

'‘Apollo: A Sequencing-Technology-Independent, Scalable, and
Accurate Assembly Polishing Algorithm"”
Bioinformatics, June 2020.

[Source Code]
[Online link at Bioinformatics Journal]

Apollo: a sequencing-technology-independent,

scalable and accurate assembly polishing algorithm
@

Can Firtina, Jeremie S Kim, Mohammed Alser, Damla Senol Cali, A Ercument Cicek,
Can Alkan ™, Onur Mutlu =

Bioinformatics, Volume 36, Issue 12, 15 June 2020, Pages 3669-3679,
https://doi.org/10.1093/bioinformatics/btaal79
Published: 13 March 2020 Article history v
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https://people.inf.ethz.ch/omutlu/pub/apollo-technology-independent-genome-assembly-polishing_bioinformatics20.pdf
https://people.inf.ethz.ch/omutlu/pub/apollo-technology-independent-genome-assembly-polishing_bioinformatics20.pdf
http://bioinformatics.oxfordjournals.org/
https://github.com/CMU-SAFARI/Apollo
https://doi.org/10.1093/bioinformatics/btaa179

Accelerating ML, & Genome Graphs [ACM TACO 24]

= Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh,
Damla Senol Cali, Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak,
Joél Lindegger, Mohammed Alser, Juan Gomez Luna,
Sreenivas Subramoney, and Onur Mutlu,

"ApHMM: Accelerating Profile Hidden Markov Models for Fast and

Energy-Efficient Genome Analysis”
ACM TACO, Mar 2024.

[Online link at ACM TACQO]
[arXiv preprint]
[ApHMM Source Code]

ApHMM: Accelerating Profile Hidden Markov Models for Fast
and Energy-Efficient Genome Analysis

Just Accepted

Authors: Can Firtina, Kamlesh Pillai, Gurpreet S. Kalsi, Bharathwaj Suresh, Damla Senol Cali,
Jeremie S. Kim, Taha Shahroodi, Meryem Banu Cavlak, Joél Lindegger, Mohammed Alser,
Juan Goémez Luna, Sreenivas Subramoney, Onur Mutlu (Less) Authors Info & Claims

ACM Transactions on Architecture and Code Optimization « Accepted on October 2023 « https://doi.org/10.1145/3632950

Published: 28 December 2023 Publication History, M) Check for updates
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https://dl.acm.org/doi/10.1145/3632950
https://dl.acm.org/doi/10.1145/3632950
https://dl.acm.org/journal/taco
https://dl.acm.org/journal/taco
https://dl.acm.org/doi/10.1145/3632950
https://arxiv.org/abs/2207.09765
https://github.com/CMU-SAFARI/ApHMM-GPU

Accelerating String Matching [MICRO 2020]

Damla Senol Cali, Gurpreet S. Kalsi, Zulal Bingol, Can Firtina, Lavanya Subramanian, Jeremie S.
Kim, Rachata Ausavarungnirun, Mohammed Alser, Juan Gomez-Luna, Amirali Boroumand,
Anant Nori, Allison Scibisz, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,
"GenASM: A High-Performance, Low-Power Approximate String Matching
Acceleration Framework for Genome Sequence Analysis"

Proceedings of the 53rd International Symposium on Microarchitecture (MICRO), Virtual,
October 2020.

[Lightning Talk Video (1.5 minutes)]

[Lightning Talk Slides (pptx) (pdf)]

[Talk Video (18 minutes)]

[Slides (pptx) (pdf)]

GenASM: A High-Performance, Low-Power
Approximate String Matching Acceleration Framework
for Genome Sequence Analysis

Damla Senol Cali ™ Gurpreet S. Kalsi®  Ziilal BingolY Can Firtina® Lavanya Subramanian Jeremie S. Kim®?
Rachata Ausavarungnirun® Mohammed Alser® Juan Gomez-Luna® Amirali Boroumand' Anant Nori®
Allison Scibisz|  Sreenivas Subramoney™ Can AlkanV Saugata Ghose*T  Onur Mutlu®TV

TCarnegie Mellon University ™ Processor Architecture Research Lab, Intel Labs " Bilkent University =~ °ETH Ziirich
YFacebook  ©King Mongkut’s University of Technology North Bangkok — * University of lllinois at Urbana—Champaign

SAFARI 29


https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20.pdf
http://www.microarch.org/micro53/
https://www.youtube.com/watch?v=nJs3RRnvk_k
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-lightning-talk.pdf
https://www.youtube.com/watch?v=srQVqPJFqjo
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenASM-approximate-string-matching-framework-for-genome-analysis_micro20-talk.pdf

Accelerating Genome Graphs [ISCA 2022]

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S.
Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie Kim, Nika MansouriGhiasi,
Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser,
Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu,

"SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph
and Sequence-to-Sequence Mapping"

Proceedings of the 49th International Symposium on Computer Architecture (ISCA), New
York, June 2022.

[arXiv version]

SeGraM: A Universal Hardware Accelerator for
Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali' Konstantinos Kanellopoulos?  Joél Lindegger? Ziilal Bingol®
Gurpreet S. Kalsi* Ziyi Zuo®> Can Firtina?® Meryem Banu Cavlak? Jeremie Kim?
Nika Mansouri Ghiasi* Gagandeep Singh® Juan Gémez-Luna® Nour Almadhoun Alserr?
Mohammed Alser® Sreenivas Subramoney* Can Alkan® Saugata Ghose® Onur Mutlu?

1Bionano Genomics 2ETH Ziirich 3Bilkent University — “Intel Labs
>Carnegie Mellon University ~ ®University of Illinois Urbana-Champaign
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https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
https://people.inf.ethz.ch/omutlu/pub/SeGraM_genomic-sequence-mapping-universal-accelerator_isca22.pdf
http://iscaconf.org/isca2022/
https://arxiv.org/pdf/2205.05883.pdf
https://arxiv.org/pdf/2205.05883.pdf

In-Storage Genome Filtering [ASPLOS 2022]

Nika Mansouri Ghiasi, Jisung Park, Harun Mustafa, Jeremie Kim, Ataberk Olgun, Arvid
Gollwitzer, Damla Senol Cali, Can Firtina, Haiyu Mao, Nour Almadhoun Alserr, Rachata
Ausavarungnirun, Nandita Vijaykumar, Mohammed Alser, and Onur Mutlu,
"GenStore: A High-Performance and Enerqy-Efficient In-Storage Computing
System for Genome Sequence Analysis"

Proceedings of the 27th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Virtual, February-March
2022.

[Lightning Talk Slides (pptx) (pdf)]

[Lightning Talk Video (90 seconds)]

GenStore: A High-Performance In-Storage Processing System
for Genome Sequence Analysis

Nika Mansouri Ghiasi' Jisung Park! Harun Mustafa! Jeremie Kim! Ataberk Olgun!
Arvid Gollwitzer! Damla Senol Cali? Can Firtina! Haiyu Mao! Nour Almadhoun Alserr!
Rachata Ausavarungnirun® Nandita Vijaykumar* Mohammed Alser! Onur Mutlu!

1ETH Ziirich 2Bionano Genomics 3KMUTNB *University of Toronto
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https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-arxiv.pdf
https://asplos-conference.org/
https://asplos-conference.org/
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenStore_asplos22-lightning-talk.pdf
https://www.youtube.com/watch?v=Vi1af8KY0g8

Genome Analysis via PIM [MICRO 2022]

Haiyu Mao, Mohammed Alser, Mohammad Sadrosadati, Can Firtina, Akanksha Baranwal,
Damla Senol Cali, Aditya Manglik, Nour Almadhoun Alserr, and Onur Mutlu,

"GenPIP: In-Memory Acceleration of Genome Analysis via Tight Integration of
Basecalling and Read Mapping"

Proceedings of the 55th International Symposium on Microarchitecture (MICRO),
Chicago, IL, USA, October 2022.

[Slides (pptx) (pdf)]

[Longer Lecture Slides (pptx) (pdf)]

[Lecture Video (25 minutes)]

[arXiv version]

GenPIP: In-Memory Acceleration of Genome Analysis
via Tight Integration of Basecalling and Read Mapping

Haiyu Mao! Mohammed Alser! Mohammad Sadrosadati* Can Firtina! Akanksha Baranwal!
Damla Senol Cali? Aditya Manglik! Nour Almadhoun Alserr! Onur Mutlu!

LETH Ziirich 2Bionano Genomics

SAFARI https://arxiv.org/pdf/2209.08600.pdf 32



https://arxiv.org/pdf/2209.08600.pdf
https://arxiv.org/pdf/2209.08600.pdf
http://www.microarch.org/micro55/
https://people.inf.ethz.ch/omutlu/pub/GenPIP_micro22-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/GenPIP_micro22-talk.pdf
https://people.inf.ethz.ch/omutlu/pub/GenPIP_comparch22-lecture-slides.pptx
https://people.inf.ethz.ch/omutlu/pub/GenPIP_comparch22-lecture-slides.pdf
https://youtu.be/PWWBtrL60dQ?t=8290
https://arxiv.org/abs/2209.08600
https://arxiv.org/pdf/2209.08600.pdf

Basecalling using PIM [MICRO 2023]

Taha Shahroodi, Gagandeep Singh, Mahdi Zahedi, Haiyu Mao, Joel Lindegger, Can Firtina,
Stephan Wong, Onur Mutlu, and Said Hamdioui,

"Swordfish: A Framework for Evaluating Deep Neural Network-based
Basecalling using Computation-In-Memory with Non-Ideal Memristors"

Proceedings of the 56th International Symposium on Microarchitecture (MICRO), Toronto,
ON, Canada, November 2023.

[Slides (pptx) (pdf)]
[arXiv version]

Swordfish: A Framework for Evaluating
Deep Neural Network-based Basecalling
using Computation-In-Memory with Non-ldeal Memristors

Taha Shahroodi’ Gagandeep Singh®> Mahdi Zahedi’ Haiyu Mao® Joel Lindegger’ Can Firtina®
Stephan Wong!  Onur Mutlu®>  Said Hamdioui!

ITU Delft 2AMD Research 3ETH Ziirich
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https://arxiv.org/pdf/2310.04366.pdf
https://arxiv.org/pdf/2310.04366.pdf
https://people.inf.ethz.ch/omutlu/pub/Swordfish_micro23-talk.pptx
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Ditterent Raw Sequencing Data
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Nanopore Sequencing

Nanopore Sequencing: a widely used sequencing technology
« Long reads (up to >2 million nucleotides)
« Portable sequencing
 Cost-effective
« More unique features: real-time analysis

SAFARI 58



Nanopore Sequencing & Real-time Analysis

Raw Electrical Signals

Nanopore Sequencing (Real-Time) Analysis

s _ Basecalling:
CTAGATG...

H_J

Basecalled
Read

Raw Signals: Ionic current measurements generated as DNA passes through

the nanopore at a certain speed

(Real-Time) Analysis: Translating to bases or directly analyzing raw signals

Real-Time Decisions: Stopping sequencing early based on real-time analysis

SAFARI 3



Benefits of Real-Time Analysis

/. Reducing latency by overlapping the sequencing and analysis steps

Time

Sequencing

|  Analysis

!

Sequencing & Real-Time Analysis

:‘ Reduced Latency

~ Reducing sequencing time and cost by stopping sequencing early

!

Completely Sequenced Read

Reduced Sequencing Time (and Cost)

Partially Sequenced Read -

SAFARI

Sequencing is stopped early with a real-time decision

40



Challenges in Real-Time Analysis

71 Rapid analysis to match the nanopore sequencer throughput

Timely decisions to stop sequencing as early as possible

@ Accurate analysis from noisy raw signal data

42

Power-efficient computation for scalability and portability
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Executive Summary

r

.

Problem: Real-time analysis of nanopore raw signals is inaccurate and inefficient for
large genomes

7

\

Goal: Enable fast and accurate real-time analysis of raw nanopore signals

7

\

Key Contributions:
1) The first hash-based mechanism for mapping raw nanopore signals

2) The novel Sequence Until technique can accurately and dynamically stop
the entire sequencing of all reads at once if further sequencing is not necessary

s

\

Key Results: Across 3 use cases and 5 genomes of varying sizes
— 27x 19X, and 4x better average throughput compared to the state-of-the-art works
— Most accurate raw signal mapper for all datasets
— Sequence Until reduces the sequencing time and cost by 15x

SAFARI 43




Existing Solutions

1.

Deep neural networks (DNNSs)

for translating signals to bases

Real-Time Analysis
Basecalling Read Mapping

- =

Less noisy analysis from
basecalled sequences

Mapping signals to reference
genomes without basecalling

Real-Time Analysis

Mapping Raw Signals

\. J

7

\

Costly and power-hungry
computational requirements

~

Raw signals contain richer
information than bases

SAFARI

Efficient analysis with better
scalability and portability
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Enabling Analysis From Electrical Signals

« K many nucleotides (k-mers) sequenced at a time
- Event: A segment of the raw signal
- Corresponds to a particular k-mer

- Abrupt signal changes show sequencing of a new k-mer
- Statistical methods can find these abrupt changes
- Event value: average of signals within an event

- Observation: Identical k-mers generate similar
event values during sequencing

Event

I I, 1 I

) : i :
;3\ : ik : %
8 IS g
105.71 )
kmany  \h B ®

nucleotides :

" Time (s) |
Event Value
SAFARI (picoampere) A5



The Problem — Mapping Raw Signals

Raw Signal

N\

l

Small Reference Genome

Large Reference Genome (Human)

Fewer candidate regions
in small genomes

Substantially larger number of regions to
check per read as the genome size increases

Accurate mapping

Problem: Probabilistic mechanisms
Oon many regions =» inaccurate mapping

High throughput

SAFARI

Problem: Distance calculation
on many regions = reduced throughput
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The Problem — Mapping Raw Signals

Existing solutions are
inaccurate or inefficient
for large genomes

SAFARI



Goal

Enable fast and accurate real-time analysis
of raw nanopore signals for large genomes

SAFARI
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w RawHash

The first hash-based search mechanism
to quickly and accurately map raw nanopore signals
to reference genomes

.

Sequence Until can accurately and dynamically stop
the entire sequencing run at once
if further sequencing is unnecessary

SAFARI 49




W RawHash

The first hash-based search mechanism

to quickly and accurately map raw nanopore signals

to reference genomes

&

SAFARI
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RawHash — Key Idea

Key Observation: Identical nucleotides generate similar raw signals

Raw Signal #1 Raw Signal #2
A A

Fast
0x01 >[ Match ]4 0x01

Challenge #1: Generating the same hash value for similar enough signals

Challenge #2: Accurately finding as few similar regions as possible

SAFARI 51



RawHash Overview

Indexing (Offline)

SAFARI

Reference Genome
...GCTATTACCTTAATGTG...

0 Reference-to-Event
Conversion

Raw Nanopore Signal

sy

\ 4

Signal-to-Event
Conversion

A 4

| 222 || -0091 ]| 1.18 |

@ Matching
Regions

Chaining Mapping
& Mapping Positions

(swip-jeay) buiddep
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RawHash Overview

SAFARI

Reference Genome

...GCTATTACCTTAATGTG...

Reference-to-Event

Conversion

A 4

Raw Nanopore Signal

sy

\ 4

Signal-to-Event
Conversion

A 4

2.21

-0.9 1.15

| 222 || -0091 ]| 1.18 |
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Reference-to-Event Conversion

- K-mer model: Provides expected event values for each k-mer
- Preconstructed based on nanopore sequencer characteristics

 Use the k-mer model to convert all k-mers
of a reference genome to their expected event values

Reference Genome Expected Normalized
..GCTATTACC.. Event Values Event Values

~ A f_/\

) 4 r N\

1 [ CGCTATT { kemer 105757390 —( = (2.1

7“:« ) CTATTA 1 Model o 81.740642 —{ 3 +{-0.09

5 TATTAC " (Lookup ——{'103.170091 = +{1.15

E | (ATTACC }—{ Table) | 761.082485 —A\_ ° {1.11

o q Y - :
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Signal-to-Event Conversion

- Event detection: Identifies signal regions corresponding to
specific k-mers
- Uses statistical test (segmentation) to spot abrupt signal changes

Raw Nanopore Signal Event Value
1 . 11 1
T ' = » 2.21
=i 1 | (@]
Hwnmm . | Calculate | _Ji105.7101 1. 3 » 0.08
»l Segment > > i\ ‘ 3
Means | 11 Lo %. » 1.18
— ® o 1.14 )

» Consecutive events = consecutive k-mers
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Signal-to-Event Conversion

Can we directly match signals to each other?

SAFARI 56



RawHash Overview

Reference Genome Raw Nanopore Signal

..GCTATTACCTTAATGTG... *’JWWMWWWWW\W

\ 4
0 Reference-to-Event Signal-to-Event
Conversion Conversion
A 4 \ 4
2.21 -0.9 1.15 | 222 || -0091 ]| 1.18 |

@ Quantization Quantization

A 4

[ 28 || 6 |[ 18 | I

A 4

28 |[ 6 || 18 |
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Quantizing the Event Values

« Observation: Slight differences in raw signals from identical k-mers
- Challenge: Direct event value matching is not feasible and accurate

- Key Idea: Quantize the event values
- Enables assigning identical quantized values to similar event values

Normalized event values Quantized event values

from the same k-mer (in binary)

K—M r A N\
-0.091 * Quantize »{1]1]0]o}1
-0.084 * Quantize »{1]1]0]o}1

CTATTA

-0.09 » Quantize »{1]1]0]o}1
-0.086 * Quantize »1]1]0]0]1

SAFARI 58



RawHash Overview

Reference Genome Nanopore Raw Signal

..GCTATTACCTTAATGTG... PJWWWMMWWWW

\ 4
0[ Reference-to-Event ] Signal-to-Event
Conversion Conversion
A 4 \ 4
2.21 -0.9 1.15 | 222 || -0091 ]| 1.18 |

@ Quantization

Quantization
A 4 A 4
[ 28 |6 |[ 18 | L 28 |6 |[ 18 |
v v
@ Hashing Hashing
Y Store Hash Query ¥
(ool ——] o s [ooi]
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Hashing for Fast Similarity Search

« Each event usually represents a very small k-mer (6 to 9 characters)
- Challenge: Short k-mers are likely to appear in many locations

- Key Idea: Create longer k-mers from many consecutive events
- Key Benefit: Directly match hash values to quickly identify similarities

Consecutive Consecutive

k-mers events
_AL _A
' N\ ' Y \
CTATTA » -0.09 » Quantize m*1]1]o]o]1
TATTA > : > ' »0joj1]1]0
. C 1 _15 Qua.ntlze \ ( Pack
. . . - l
ATTACC > 1.11 :Quantlze :00101J 1l1lololilololil1lo --- ol1lolo

Hash value of { 0x400D70A4 |+— Hash

consecutive events
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RawHash Overview

Indexing (Offline)

SAFARI

Reference Genome
...GCTATTACCTTAATGTG...

0 Reference-to-Event
Conversion

Raw Nanopore Signal

sy

\ 4

Signal-to-Event
Conversion

A 4

| 222 || -0091 ]| 1.18 |

@ Matching
Regions

Chaining Mapping
& Mapping Positions

(swip-jeay) buiddep
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Real-Time Mapping using Hash-based Indexing

SAFARI

Indexing (Offline)
Reference Genome

llllllllllll v,
[
[

: Read Until : “No: Stop mapping

. or 1<
;, Run Until :

4pEEEEEEEEEEESR

...GCTATTACCTTAATGTG... —4—
v
Reference-to-Event Signal-to-Event
Conversion Conversion
A\ 4 \ 4
Quantization Quantization
v v
Hashing Hashing
y__ Store( ... . Query Y
0x01 Table I 1.0x01 |
; Chaining &
- - _ aining
Matching Positions " Mapping

Continue
Mapping?

Mapping (Real-time)
Raw Nanopore Signal

JUNYD 1XaU 3] SS320.d :SOA

\_
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W RawHash

The first hash-based search mechanism

to quickly and accurately map raw nanopore signals

to reference genomes

&

SAFARI
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RawHash

Sequence Until can accurately and dynamically stop
the entire sequencing run at once
if further sequencing is unnecessary

.
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The Sequence Until Mechanism

* Problem:
- Unnecessary sequencing waste time, power and money

* Key Idea:

- Dynamically decide if further sequencing of the entire sample is
necessary to achieve high accuracy

- Stop sequencing early without sacrificing accuracy

* Potential Benefits:
- Significant reduction in sequencing time and cost

« Example real-time genome analysis use case:
- Relative abundance estimation
SAFARI
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The Sequence Until Mechanism

» Key Steps:

s

Keep the last t estimation results
Detect outliers in the results via cross-correlation of the recent t results

Absence of outliers indicates consistent results

Continuously generate relative abundance estimation after every n reads

 Further sequencing is likely to generate consistent results = Stop the sequencing

Relative

n Reads Sequenced

—> Abundance —

Estimation
Relative

2n Reads Sequenced

Estimation

Relative

txn Reads Sequenced

SAFARI

Estimation

Estimation #1

—> Abundance —

Estimation #2

—> Abundance —

Estimation #t

[

Keep
Sequencing
)
@
@
=)
2
[ Stop
Sequencing
66
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Key Contributions in RawHash2

é )

A new adaptive quantization to better fit the expected
nanopore signal pattern to achieve high accuracy

Improved chaining algorithm with sensitive penalty scores

Weighted decision making for more robust mapping

Frequency filter and minimizer sketching
to reduce seed matches for faster and space-efficient mapping

. S
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Sketching with Hash-based Indexing
Indexing (Offline) Mapping (Real-time)
Reference Genome Raw Nanopore Signal
...GCTATTACCTTAATGTG... —4—

Reference-to-Event Signal-to-Event
Conversion Conversion
\ 4 \ 4
Quantization Quantization
v v
........... . Hashing Hashing
' AII k-mers, : : 1 1
: : Minimizers, : prei ey S [ [ A
: Strobemers, Mf-sereeeeee r=+% Sketch :  Sketch °
BLEND’ E 4pEEEguEEEnR Illlillll

Y__ Store| Hash

S _ Query
R . [ox01 — Table) 0x01

A 4
Matching Positions >

Chaining &
Mapping

¢ Read Unt|| No: Stop mapping
: or :~

E Run Until :

SAFAR’ ............. k

JUNYD 1XaU 3] SS320.d :SOA
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Evaluation Methodology

« Two settings for RawHash2:

- RawHash2: All hash values without sampling
- RawHash2-Minimizer: Minimizer sketching

e Compared to UNCALLED ,
Sigmap and RawHash

« Use cases for real-time genome analysis:
1. Read mapping

2. Relative abundance estimation

3. Contamination analysis

SAFARI 71



Evaluation Methodology

e Evaluation metrics:

- Throughput (bases processed per second per CPU thread)
- Potential reduction in sequencing time and cost

- Accuracy

- Baseline: Mapping basecalled reads using minimap2
 Precision, recall, and F1 scores

« Relative abundance estimation distance to ground truth

 Datasets:

SAFARI

Organism

Reads (#) Bases (#) Genome Size

Read Mapping

Relative Abundance Estimation

DI SARS-CoV-2 1382016  594M 29,903
D2 E. coli 353317 2,365M 5M|
D3 Yeast 49,989 380M 12M|
D4  Green Algae 29,933 609M 111M|
D5 Human HGOOI 269,507  1,584M 3,117

D1-D5 2,084,762 5,531M 3,246 Ml
ontamination Analysis

D1 and D5

1,651,523 2,178M 29,903

72



Throughput

- Real-time analysis requires faster throughput than sequencer

- Throughput from a single pore: ~450 bp/sec (data generation speed)
BRawHash2 [0 RawHash2-Minimizer [l RawHash ll UNCALLED [ Sigmap

Throughput (bp/sec)
e e
L2

=
o
—

SARS-CoV-2 E. coli Yeast Green Algae Human Contamination Relative
Abundance

RawHash2: 27 %, 19%, and 4x better average throughput
compared to UNCALLED, Sigmap and RawHash, respectively

RawHash2-Minimizer further improves the throughput
by 2.5x compared to RawHash2

SAFARI 73



Average Sequenced Length

» Fewer bases to sequence =» Less unnecessary sequencing

BRawHash2 [ RawHash2-Minimizer [l RawHash [l UNCALLED H Sigmap

X
c
o

(@)
o
(e}
(e}
4%

X
o
™

X
™
N

X
(o)}

X
oN
NN

06X

x -
N —
—

2.4%
1.4%

X

X
—
—

Avg. Sequenced Length
N
o
(e}
(en)

Yeast Green Algae Human Contamination Relative
Abundance

|

19139q SI JOMO']

RawHash2 reduces sequencing time and cost
on average by 1.9x compared to UNCALLED and RawHash

RawHash?2 leads to sequencing the least amount of bases

for larger genomes

SAFARI
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Accuracy

« Read mapping, contamination, and relative abundance estimation
accuracy (baseline: basecalled mapping)

Dataset Metric RH2 RH2-Min. RH UNCALLED Sigmap
SARS-CoV-2 F1 0.9867 0.9691 0.9252 0.9725 0.7112
E. coli F1 0.9748 0.9631 0.9280 0.9731 0.9670
Yeast F1 0.9602 0.9472 0.9060 0.9407 0.9469
Green Algae F1 0.9351 0.9191 0.8114 0.8277 0.9350
Human F1 0.7599 0.6699 0.5574 0.3197 0.3269
Contamination Precision 0.9595 0.9424 0.8702 0.9378 0.7856
Rel. Abundance Distance 0.2678 0.4243 0.4385 0.6812 0.5430

Best results are highlighted .

RawHash2 provides the most accurate read mapping

RawHash2-Minimizer provides an on-par accuracy with RawHash2

while improving the throughput substantially
SAFARI



Benefits of Sequence Until

« Running RawHash with and without Sequence Until

Estimated Relative Abundance Ratios in 50,000 Random Reads

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
RawHash (100%) 0.0270 0.3636 0.3062 0.1951  0.1081 N/A
RawHash + 0.0283 0.3539 0.3100 0.1946  0.1133 0.0118
Sequence Until (7%)

Sequence Until enables sequencing only 7% (~1/15)

of the entire sample with high accuracy

UNCALLED and RawHash benefit from Sequence Until

significantly by up to 100x reductions in sequencing

SAFARI
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Conclusion

é )

Key Contributions:

1) The first hash-based mechanism for mapping raw nanopore signals

2) The novel Sequence Until technique can accurately and dynamically stop

the entire sequencing of all reads at once if further sequencing is not necessary

\ J

4 N
Key Results: Across 3 use cases and 5 genomes of varying sizes

— 27x 19x%, and 4x better average throughput compared to the state-of-the-art works

— Most accurate raw signal mapper for all datasets

— Sequence Until reduces the sequencing time and cost by 15x

\ S

( )

Many opportunities for analyzing raw nanopore signals in real-time:

— Many hash-based sketching techniques can now be used for raw signals

— Indexing is very cheap: Many future use cases with the on-the-fly index construction

— We should rethink the algorithms to perform downstream analysis fully using raw signals
\, J
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https://github.com/CMU-SAFARI/RawHash
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440
https://arxiv.org/abs/2309.05771
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Future 1s Bright
for Raw Signal Analysis




Overlapping Raw Signals in Real-Time

Rawsamble: Overlapping and Assembling Raw Nanopore Signals
using a Hash-based Seeding Mechanism

Can Firtina! Maximilian Mordig'? Joél Lindegger! Harun Mustafal** Sayan Goswami’

Stefano Mercogliano! Yan Zhu!> Andre Kahles'** Onur Mutlu!
YETH Zurich 2 Max Planck Institute for Intelligent Systems 3University Hospital Zurich

4 Swiss Institute of Bioinformatics >University of Toronto
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Real-time de novo Assembly Construction

All-vs-all overlapping using raw signals

Organism Shared Unique to Unique to
Overlaps (%) Rawsamble (%) Minimap2 (%)

D1 E. coli 44.57 15.08 40.35
D2 Yeast 47.07 35.62 1732
D3 Human 19.73 27.56 52.71

Building de novo assemblies directly from raw signals

Organism Tool

No. of Avg. Contig Max. Contig

contigs Length Length
D1 Rawsamble 39 373,594 1,431,572
E. coli minimap2 4 2,611,044 5,210,938
D2 Rawsamble 431 47,250 256,116
Yeast minimap?2 278 82,757 386,005
D3 Rawsamble 59 16,376 66,163
Human minimap2 53 10,572 42,654

SAFARI

83



Opportunities for New Applications

Improving the basecalling accuracy using the overlapping
information between signals

Full downstream analysis fully using raw nanopore signals

Cooperating the raw signal analysis and basecalled
sequence analysis together

Many, many more keeping the hardware design in mind

SAFARI 54
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[lumina DRAGEN Bio-IT Platform (2018)

= Processes whole genome at 34x coverage in ~30 minutes
with hardware support for data compression

eyt | =

™ =

-
l“' L e LI RE R R LR AT R SR
! [

VIR NS R IR hee {l!‘l’ll ll.llll_l_l
Thme o v v el 'd ;:;.: ‘;—(_:.-.- . ~
- - o ; QA

v

in
M
1

! FPGA board(s)
emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
emea.illumina.com/company/news-center/press-releases/2018/2349147.html
illumina.com/content/dam/illumina/gcs/assembled-assets/marketing-literature/dragen-
bio-it-data-sheet-m-gl-00680/dragen-bio-it-data-sheet-m-gl-00680.pdf
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https://emea.illumina.com/products/by-type/informatics-products/dragen-bio-it-platform.html
https://emea.illumina.com/company/news-center/press-releases/2018/2349147.html
https://www.illumina.com/content/dam/illumina/gcs/assembled-assets/marketing-literature/dragen-bio-it-data-sheet-m-gl-00680/dragen-bio-it-data-sheet-m-gl-00680.pdf
https://www.illumina.com/content/dam/illumina/gcs/assembled-assets/marketing-literature/dragen-bio-it-data-sheet-m-gl-00680/dragen-bio-it-data-sheet-m-gl-00680.pdf

Nova/NextSeq with Analysis Capability

| Scale your studies with ease

Process high-throughput data quicklyjwith hardware acceleration

Proc i i i i i r field-programmable gate
arrayg (FPGAs) onboard you have the most powerful DRAGEN analysis evel} enabling you to process

e ’\_ G NovaSeq X System data easily. Perform up to four simultaneous applications per flow cell in a single
AT l run.
N Reduce data footprint, manage and store data easily with lower costs and lower energy consumption,
with built-in compression that reduces FASTQ file sizes by up to 80%.2
CACC C
SR N G Stream data directly to lllumina Connected Analytics or BaseSpace Sequence Hub on the cloud for
- scalable data management, analysis, and aggregation.
2 A
'
{ s}

https://www.illumina.com/content/dam/illumina/gcs/assembled-assets/marketing-
literature/dragen-bio-it-data-sheet-m-gl-00680/dragen-bio-it-data-sheet-m-gl-00680. pdf

https://emea.illumina.com/systems/sequencing-platforms/novaseg-x-plus/products-
services/software.html
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https://www.illumina.com/content/dam/illumina/gcs/assembled-assets/marketing-literature/dragen-bio-it-data-sheet-m-gl-00680/dragen-bio-it-data-sheet-m-gl-00680.pdf
https://www.illumina.com/content/dam/illumina/gcs/assembled-assets/marketing-literature/dragen-bio-it-data-sheet-m-gl-00680/dragen-bio-it-data-sheet-m-gl-00680.pdf
https://emea.illumina.com/systems/sequencing-platforms/novaseq-x-plus/products-services/software.html
https://emea.illumina.com/systems/sequencing-platforms/novaseq-x-plus/products-services/software.html

NVIDIA Clara Parabricks (2020)

A University of Michigan startup in
2018 joined NVIDIA in 2020

GPU board(s)

PERFORMANCE COMPARISON
Germline End-to-End Secondary Analysis

1,200 minutes

l \ 52 minutes 35 minutes 23 minutes

e
CPU/GATK 8X T4 8X V100 8X A100

SAFARI https://developer.nvidia.com/clara-parabricks 88



https://developer.nvidia.com/clara-parabricks

NVIDIA H100 (2022)

i -

rory HIRIININIRISIEIY
el (R ML)

NVIDIA is claiming a 7x improvement in dynamic programming

algorithm (DPX instructions) performance on a single H100
versus naive execution on an A100.

SAFAR]/| https://www.nvidia.com/en-us/data-center/h100

Up to 7X Higher Performance for HPC
Applications

3D Fast Fourier Transform (FFT) Genome Sequencing

H100 to A100 Comparison - Relative Performance

89


https://www.nvidia.com/en-us/data-center/h100/

= We are accelerating the transformation
in how we analyze the human genome!

DIONQNO  FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.

@@a@'@@

Technological solution to support
higher throughput

New high-performance algorithms
from Bionano

Powered by NVIDIA RTX™ 6000
Ada Generation GPUs

Analysis of highly complex cancer
whole genomes in less than 2 hours

Workflow tailored for a small lab and
IT footprint

90



Cerebras’s Wafer Scale Engine (2021)

.
?t = The largest ML
accelerator chip (2021)

= 850,000 cores

Cerebras WSE-2 Largest GPU
2.6 Trillion transistors 54 .2 Billion transistors
46,225 mm?2 826 mm?2

NVIDIA Ampere GA100

ﬁéﬁM!erebras.net/cerebras-wafer-scale-engine-whv-we-need-big-chips-for-deeo-learning[



https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

UPMEM Processing-in-DRAM Engine (2019)

Processing in DRAM Engine

Includes standard DIMM modules, with a large
number of DPU processors combined with DRAM chips.

Replaces standard DIMMs

o DDR4 R-DIMM modules

8GB+128 DPUs (16 PIM chips)
Standard 2x-nm DRAM process

o Large amounts of compute & memory bandW|dth

% 8GB/128xDPU PIM R-DIMM Module

UPMEM UPMEM UPE M UPMER UPMEM LIPMEM UPMEM UPMEM
PIM PN PIM Pl P PIM PIN pIM
chip chip chip chip chip chip chip thip

https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem

https: upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/ 92
K1 Onur Mutlu, Computer Architecture Lecture 2b, Fall 2019, ETH Zurich



https://www.anandtech.com/show/14750/hot-chips-31-analysis-inmemory-processing-by-upmem
https://www.upmem.com/video-upmem-presenting-its-true-processing-in-memory-solution-hot-chips-2019/
https://safari.ethz.ch/architecture/fall2019/lib/exe/fetch.php?media=onur-comparch-fall2019-lecture2b-courselogistics-afterlecture.pdf

BioPIM (2022)

Alignment

and search

algorithms
(BU, IP)

Neuromorphic

computing
(IBM/ |
BioPIM[®'

Associative \
memory
processing
(TECHNION)

Bulk bitwise
operations
(ETH)

Data
structures
(BU, IP,
CNRS)

\J

TN Graph

theory
(IP, CNRS)

Genomics

(BU, IP,

CNRS)
3D Stacked

Memory
technologies

(ETH, UPMEM
CNRS)

The vision of BioPIM is the realization of cheap, ultra-fast and ultra-low energy mobile
genomics that eliminates the current dependence of sequence analysis on large and power-

hungry computing clusters/data-centers.

SAFARI

93



Fast Genome Analysis...

Onur Mutlu,

'Accelerating Genome Analysis: A Primer on an Ongoing Journey"

Invited Lecture at Technion, Virtual, 26 January 2021.
[Slides (pptx) (pdf)]

[Talk Video (1 hour 37 minutes, including Q&A)]
[Related Invited Paper (at IEEE Micro, 2020)]

SAFARI

Insight: Shifting a String Helps Similarity Search

7 matches 1 mismatch

A|IN U

Onur Mutlu - Invited Lecture @Technion: Accelerating Genome Analysis: A Primer on an Ongoing Journey
566 views + Premiere d Feb 6, 2021 i 31

0 SHARE SAVE
@ ?;g?::;lslirle:r‘:res ANALYTICS EDIT VIDEO
> .
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https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.technion.ac.il/en/
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pdf
https://www.youtube.com/watch?v=r7sn41lH-4A
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

More on Fast Genome Analysis...

Onur Mutlu,

"Accelerating Genome Analysis"

Invited Talk at the Barcelona Supercomputing Center (BSC), Barcelona, Spain, 6
September 2022.

[Slides (pptx) (pdf)]

[Talk Video (1 hour 35 minutes, including Q&A)]

[Related Invited Paper (at IEEE Micro, 2020)]

[Related Invited Paper (at Computational and Structural Biology Journal, 2022)]

A Bright Future for Intelligent Genome Analysis

Mohammed Alsel ZIIBgIDmIS ICIerIeKmS thh CAIk , Onur Mutlu
“Accelerating Analysis: A Primer on an oing Journey” IEEEM Ag st 2020.

ing Genome is: A Primer on

an ne
FPGA-Based Nea MmoryA | : of
Modern Data-lntensive Applicatio

MinION from ONT

SmidglON from ONT

Accelerating Genome Analysis - Onur Mutlu's Invited Talk at the Barcelona Supercomputing Center

@ Onur Mutlu Lectures Editvideo /> Share =+ Save
«¥b>  36.6K subscribers
023

imer on an Ongoing Journey

nnnnnnnnnnnnnn (including Q8A)
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https://people.inf.ethz.ch/omutlu/pub/onur-BSC-Seminar-AcceleratingGenomeAnalysis-Sep-6-2022.pptx
https://www.bsc.es/research-and-development/research-seminars/bsc-rs-accelerating-genome-analysis
https://people.inf.ethz.ch/omutlu/pub/onur-BSC-Seminar-AcceleratingGenomeAnalysis-Sep-6-2022.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-BSC-Seminar-AcceleratingGenomeAnalysis-Sep-6-2022.pdf
https://www.youtube.com/watch?v=tVpg0XqU_c4
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
https://arxiv.org/abs/2205.07957

More on Accelerating Genome Analysis

Can Firtina,

"Enabling Accurate, Fast, and Memory-Efficient Genome Analysis via Efficient
and Intelligent Algorithms"

Talk at UC Berkeley, Berkeley, CA, United States, May 27, 2022.

[Slides (pptx) (pdf)]

[Talk Video (1 hour 6 minutes)]

Enabling Accurate, Fast, and Memory-
Efficient Genome Analysis via Efficient

and Intelligent Algorithms

Can Firtina
canfirtina@gmail.com

27 May 2022
Invited Seminar Talk at UC Berkeley

SAFARI ETH:zurich

QLim@0

> Pl ) 031/10633

Enabling Accurate, Fast, and Memory-Efficient Genome Analysis - Can Firtina (Talk at UC Berkeley)

Onur Mutlu Lectures
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https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pdf
https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pdf
https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pptx
https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pdf
https://www.youtube.com/watch?v=5C3FdBXrSlg

More on Real-Time Genome Analysis

Can Firtina,

"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore
Signals for Large Genomes"

Proceedings Talk at ISMB-ECCB, Lyon, France, 25 July 2023.

[Slides (pptx) (pdf)]

[Talk Video (18 minutes]

RawHash — Key Idea

Key Observation: Identical nucleotides generate similar raw signals

Fast
i—’ Match | iowl

Challenge #1: Generating the same hash value for similar enough signals

Challenge #2: Accurately finding similar regions as few as possible
SAFARI

RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals | ISMB-ECCB 2023
2 Onur Mutlu Lectures ) —
Q 261K subscribers Analytics @ A Share =+ Save
294 views Premiered Aug 15, 2023

Talk of "RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for Large Genomes" at ISMB-ECCB 2023
Presenter: Can Firtina

Duration: 18:58 minutes

SAFARI o7


https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440?login=false
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440?login=false
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pptx
https://people.inf.ethz.ch/omutlu/pub/RawHash_ismb-eccb23-talk.pdf
https://www.youtube.com/watch?v=ti0M6TvRkTs&t=5s

Accelerating Genome Analysis [pac 2023

Onur Mutlu and Can Firtina,

"Accelerating Genome Analysis via Algorithm-Architecture Co-Design"
Invited Special Session Paper in Proceedings of the 60th Design Automation
Conference (DAC), San Francisco, CA, USA, July 2023.

[Slides (pptx) (pdf)]

[Talk Video (38 minutes, including Q&A)]

[Related Invited Paper]

[arXiv version]

Accelerating Genome Analysis
via Algorithm-Architecture Co-Design

Onur Mutlu Can Firtina
ETH Ziirich

SAFARI https://ieeexplore.ieee.org/document/10247887 78


https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.dac.com/
https://www.dac.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pdf
https://www.youtube.com/watch?v=osg9su2FDr8
https://ieeexplore.ieee.org/document/10247887
https://arxiv.org/pdf/2305.00492.pdf

BIO-Arch Workshop at RECOMB 2023

April 14, 2023

BIO-Arch: Workshop on Hardware
Acceleration of Bioinformatics

Workloads ORI R~ T SN
2 Y N / v
' / Sar- N X of '%’ N
About Ny # KDL
. 4 . . . , A N BIO-Arch:
BIO-Arch is a new forum for presenting and discussing new ideas in accelerating Worksh Hardl A | i
bioinformatics workloads with the co-design of hardware & software and the use of Oorkshop on FHardware Acceleration
new computer architectures. Our goal is to discuss new system designs tailored for £ y Friday, April 14 2023
bioinformatics. BIO-Arch aims to bring together researchers in the bioinformatics, Sk i g Live in Istanbul & YouTuue

computational biology, and computer architecture communities to strengthen the
progress in accelerating bioinformatics analysis (e.g., genome analysis) with efficient
system designs that include hardware acceleration and software systems tailored fo
new hardware technologies.

Ve n u e BIO-Arch: Workshop on Hardware Acceleration of Bioinformatics Workloads

: 3 E crsme : : ¢ 5 3 ™ Onur Mutlu L ) e % (o _
BIO-Arch will be held in The Social Facilities of istanbul Technical University on April & it 8 | GP  Dshwe L Download SOl =+ save
14. Detailed information about how to arrive at the venue location with various 1,448 views Streamed live on Apr 14, 2023

transportation options can be found on the RECOMB website.

Our panel discussion will be held in conjunction with the main RECOMB conference.
The panel discussion will be held in Marriott Sisli on April 17 at 17:00. You can find

https://www.youtube.com/watch?v=2rCsb4-nLmg
SAFARI https://safari.ethz.ch/recomb23-arch-workshop/ =



https://safari.ethz.ch/recomb23-arch-workshop/
https://www.youtube.com/watch?v=2rCsb4-nLmg

4 Lecture Playlist (Fall 2023):

Y
g =
[]
| Fa I I 20 23 Ed Itl o n [ ] Understandlng genetlc variatiol redlctlng the presence and relative

o https://safari.ethz.ch/projects and seminars/fall2023/do *_ 20 . @
ku.php?id=bioinformatics T -4 -

= Spring 2023 Edition: "‘,:?'

o https://safari.ethz.ch/projects and seminars/spring2023 :
/doku.php?id=bioinformatics

And, many, many other applications ...

= Youtube Livestream (Fall 2023):

o https://youtube.com/playlist?list=PL5Q2s0XY2Zi O0wyO
iiMShG4t20QPZoeE3

= Project course

14 Watch (D YouTub
o Taken by Bachelor’s students B O —
o Genomics lectures Fall 2023 Schedule
H n d _ n h I t- n Week Date Livestream Meeting
Q a s 0 resea rC eXp o ra Io Wo 05.10 LO: Project Introductions and Q&A
. Thu.
a Ma ny resea rCh read I ng S w1 11.10 Yo Live = L1: P&S Course Introduction & Scope
Wed. az (PDF) i (PPT)
w2 25.10 L2: Introduction to Genome Analysis
Wed. (PDF) | |(PPT)
w3 01.11 L3: From Molecules to Data: An Overview of DNA Sequencing
Wed. Technologies
(PDF) (PPT)
w4 08.11 L4a: Fundamentals of Sequence Alignment: Algorithms and Applications
Wed. (PDF) | |(PPT)

https://www.youtube.com/onurmutlulectures #fﬁ)"‘(;i“ S e
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https://safari.ethz.ch/projects_and_seminars/fall2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2023/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2023/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/spring2022/doku.php?id=bioinformatics
https://www.youtube.com/watch?v=nA41964-9r8&list=PL5Q2soXY2Zi8tFlQvdxOdizD_EhVAMVQV
https://youtube.com/playlist?list=PL5Q2soXY2Zi_O0wyOjiMShG4t2QPZoeE3
https://youtube.com/playlist?list=PL5Q2soXY2Zi_O0wyOjiMShG4t2QPZoeE3
https://www.youtube.com/onurmutlulectures

Conclusion

We covered various recent ideas to
o Accelerate genome analysis
o Analyze genomes in ways that were not possible before

Enabling cost-effective, portable, fast, and accurate genome analysis has
many implications

o What are the new applications to enable with these unique benefits?

Can we do even better?

o Understanding and modifying the sequencing process for analyzing
other types of biological data

Many future opportunities exist
o Especially with new sequencing technologies
o Especially with new applications and use cases

SAFARI tot



Real-time Analysis of Genomic Sequences

from Nanopore Electrical Signals by Fast and
Accurate Hash-based Search

Can Firtina
canfirtina@gmail.com
https://cfirtina.com

3 May 2024
Tufts University

SAFARI ETH:irich


mailto:canfirtina@gmail.com
https://cfirtina.com/

Analysis 1s Bottlenecked in Read Mapping!!

Human
genome

32 CPU hours
on a 48-core processor

Human whole
genomes
at 30x coverage

in about 2 days

Illumina NovaSeq 6000 ‘

Read Mapping = Others

71%

SA FARI Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM 103
bio-IT processor for precision medicine”, Open Journal of Genetics, 2017.



https://www.scirp.org/journal/paperinformation.aspx?paperid=74603
https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

A Tsunami of Sequencing Data

A Tera-scale increase in sequencing production in the past 25 years

Genes & Operons 1990 Kilo = 1,000

Bacterial genomes 1995  Mega = 1,000,000

Human genome 2000 Giga = 1,000,000,000

Human microbiome 2005  Tera=1,000,000,000,000

50K Microbiomes 2015  Peta=1,000,000,000,000,000

200K Microbiomes 2020 Exa= 1,000,000,000,000,000,000

1M Microbiomes 2025  Zetta = 1,000,000,000,000,000,000,000 s°:r:ei‘des

Earth Microbiome 2030  Yotta = 1,000,000,000,000,000,000,000,000 ’
Efficient indexing of k-mer presence and abundance in sequencing datasets Rayan Chikhi, VanBUG seminar 2020
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Today’s Computing Systems

von Neumann model, 1945

where the CPU can access data stored in an off-chip
main memory only through power-hungry bus
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Bt/ e : i

:-._... Epgiindines 8 B SOl B
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j S ;
Storage (SSD/HDD) Main Memory Microprocessor

SAFARI Burks, Goldstein, von Neumann, “Preliminary discussion of the logical 105

design of an electronic computing instrument,” 1946.



The Problem

Data analysis
IS performed
far away from the data
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The Need for Speed

Moore's Law

D
8 8

National Human Genome
Research Institute

genome.gov/sequencingcosts

me (hours)

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 jurwer

CPU

(-

Did we realize the need for
faster genome analysis?

Mapper

e RMAP

e DBowtie
BWA

e GSNAP
SMALT

e LAST
SNAP

o Bowtie2
Subread

o HISAT2

® mnimap2

Before 2013

2013 and later

Year of publication

Alser+, "Technology dictates algorithms: Recent developments in read alignment",

SAFARI Genome Biology, 2021
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https://arxiv.org/abs/2003.00110

Sequence Alignment in Unavoidable

» Quadratic-time dynamic-
programming algorithm WHY?! INIEITIHIEIRILIAINIDISI

Enumerating all possible prefixes

S

W
NETHERLANDS x SWITZERLAND I

¥ NETHERLANDS x S L 1

NETHERLANDS x SW 11T ete
NETHERLANDS x SWI E| o o}
NETHERLANDS x SWIT S 1 |
NETHERLANDS x SWITZ L o of
NETHERLANDS x SWITZE A l 1
NETHERLANDS x SWITZER N ¥
NETHERLANDS x SWITZERL 5
NETHERLANDS x SWITZERLA
NETHERLANDS x SWITZERLAN

NETHERLANDS x SWITZERLAND
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Sequence Alignment in Unavoidable

» Quadratic-time dynamic-

programming algorithm N[ E[T[H[E[R[L[A[N]D]S
_ _ _ 0|1/2|3|4|5/6|7|8]|9/10[11
Enumerating all possible prefixes Sl 1121312151678 9 1010
W(2|/2/23|4|5|6|7/8|9]|10/11
1/3/3|3|3|4(5/6|7|8/|9/10[11
» Data dependencies limit the Tl4/4/4/3/4/5/6 78 91011
computation parallelism 21515/5/4/4)5]6]7]8]9]10}11
_ E|6|(6|(5/5/5/4|5|/6[7[8|910
Processing row (or column) after another rl 7171 6lelelsi@lslel718lo
L|8|8|7|7|7|6|5|4/5/6|7]|8
Al9|9/8|8|8|7|6|5/4/5|6]|7
» Entire matrix is computed N110/9191919181716]5 4] 5
. D|(11/10/10|10(10|/9 |8 |7 |6 | 5| 4§ 5
even though strings can be
dissimilar.
Number of differences is computed only at the backtraking step.
109
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Metagenomics Analysis

Reads from different unknown donors at sequencing
time are mapped to many known reference genomes

genetic material recovered s <
directly from environmental
samples Reads Reference
“text format” Database

SAFARI N 10



Genomics vs. Metagenomics
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Huge Demand for Performance & Efficiency

Exponential Growth of Neural Networks aa

Memory and compute requirements 1800x more compute

2018 2019 2020+ i
o MSET-AT (1) In just 2 years

e MT-NLG (530B)
® GPT-3 (175B)

100,000

10,000

1,000

e T5(11B)

o I-NLG (17B) Tomorrow, multi-trillion

EEmE (':"ggBi‘tron'LM i3 parameter models
. b .

100

R «BERT Large (340M)

¢ BERT Base (110M)

Total training compute, PFLOP-days

1 10 100 1,000 10,000 100,000
] Model memory requirement, GB ‘

P P ) 443/10815 up @ O [& O I3

SAFARI Source: https://youtu.be/Bh13Idwcb0Q?t=283 112



Deeper and Larger Memory Hierarchies
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Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared
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AMD’s 3D last Level Cache (2021)

32MB
L3 Cache

AMD increases the L3 size of their 8-core Zen 3
ccp processors from 32 MB to 96 MB

Additional 64 MB L3 cache die

stacked on top of the processor die
- Connected using Through Silicon Vias (TSVs)

- Total of 96 MB L3 cache

Structural silicon

64MB L3 cache die

Direct copper-to-copper bond

Through Silicon Vias (TSVs) for
silicon-to-silicon communication

Up to 8-core “Zen 3" CCD

tidh: AYMx34euU 114
ps://www.tech-critter.com/amd-keynote-computex-2021/



https://youtu.be/gqAYMx34euU
https://www.tech-critter.com/amd-keynote-computex-2021/
https://community.microcenter.com/discussion/5134/comparing-zen-3-to-zen-2
https://community.microcenter.com/discussion/5134/comparing-zen-3-to-zen-2

Deeper and Larger Memory Hierarchies
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IBM POWER10,
2020

Cores:

15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared
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Deeper and Larger Memory Hierarchies

Apple M1 Ultra System (2022)

https://www.gsmarena.com/apple_announces_m1_ultra_with_20core_cpu_and_64core_gpu-news-53481.php



Data Movement Overwhelms Modern Machines

Amirali Boroumand, Saugata Ghose, Youngsok Kim, Rachata Ausavarungnirun, Eric Shiu, Rahul
Thakur, Daehyun Kim, Aki Kuusela, Allan Knies, Parthasarathy Ranganathan, and Onur Mutlu,
"Google Workloads for Consumer Devices: Mitigating Data Movement Bottlenecks"
Proceedings of the 23rd International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Williamsburg, VA, USA, March 2018.

62.7% of the total system energy
Is spent on data movement

Google Workloads for Consumer Devices:
Mitigating Data Movement Bottlenecks

Amirali Boroumand* Saugata Ghose’ Youngsok Kim?
Rachata Ausavarungnirun!  Eric Shiv>  Rahul Thakur’>  Daehyun Kim*?
Aki Kuusela®>  Allan Knies®  Parthasarathy Ranganathan®  Onur Mutlu”!
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https://people.inf.ethz.ch/omutlu/pub/Google-consumer-workloads-data-movement-and-PIM_asplos18.pdf
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Processing-in-Memory Landscape Today
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i
i
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[SK Hynix 2022] [Samsung 2021] [UPMEM 2019]

SAFARI And, many other experimental chips and startups 18



The Energy Perspective

Communication Dominates Arithmetic

Dally, HIPEAC 2015

256-bit access
8 kB SRAM
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Data Movement vs. Computation Energy

Communication Dominates Arithmetic

Dally, HIPEAC 2015

64-bit DP DRAM
16 nJ * Rd/Wr

256-bit buses

500 PJ Efficient

off-chip link
256-bit access

8 kB SRAM
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Data Movement vs. Computation Energy
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Data Movement vs. Computation Energy
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Practical Similarity Identifica

t101._— Seeds
- ———— >3 piion characters
[ 1 NG v
Reference TTGCCEATATGGTTAAGCTTICINIGG

............. v APMEGGGCTTTCGCTTTG
- /@W —
W

K-mers Locations

| 1
Read [GCCCAAATGGTT] GCTYA 7
c| s
By
K-mers

AAA | 31 101
CCA | 25 230 | 400

Index (Hash Table)

. Determine potential matching regions (seeds) in the reference

Seed Filtering :
. . Prune some seeds in the reference genome
(e.g., Chaining)

Determine the exact differences between the read and the
reference genome

SAFARI
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Existing Solutions — Real-time Basecalling

Deep neural networks (DNNSs) for translating signals to bases

Nanopore sequencing Raw Signal Real-time Analysis
S Basecalling Read mapping

DNNSs provide less noisy analysis from basecalled sequences

Costly and power-hungry computational requirements
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The Problem

Real-time Analysis
Basecalling Read mapping

-

(Costly and energy-hungry\
computations to basecall
each read:
Portable sequencing becomes
challenging with

The existing solutions are ineffective for large genomes

Real-time Analysis
Signal mapping

kresource-constrained devices )

SAFARI

Larger number of reference
regions cannot be handled
accurately or quickly,
rendering existing solutions
ineffective for large
genomes
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Applications of Read Until

Depletion: Reads mapping to a particular reference genome is ejected
« Removing contaminated reads from a sample

» Relative abundance estimation

 Controlling low/high-abundance genomes in a sample

 Controlling the sequencing of depth of a genome

Enrichment: Reads not mapping to a particular reference genome is ejected
« Purifying the sample to ensure it contains only the selected genomes

* Removing the host genome (e.g., human) in contamination analysis
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Applications of Run Until and Sequence Until

Run Until: Stopping the sequencing without informative decision from analysis

 Stopping when reads reach to a particular depth of coverage

 Stopping when the abundance of all genomes reach a particular threshold

Sequence Until: Stopping the sequencing based on information decision

« Stopping when relative abundance estimations do not change substantially
(for high-abundance genomes)

 Stopping when finding that the sample is contaminated with a particular set
of genomes
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Details: Quantizing the Event Values

« Observation: Identical k-mers generate similar raw signals
- Challenge: Their corresponding event values can be slightly different

« Key Idea: Quantize the event values
- To enable assigning the same quantized value to the similar event values

Slightly Different

(Normalized)
/ Event Values

-0.091 in binary: -0.084 in binary:
1joj1p1jrjrjojryrjojayjry .. 1joj1j1§j1j1jo0y1j1jo0j11}o0
\ J \ & J
4 4
Most significant Q = 9 bits: Most significant Q = 9 bits:
110 o111 110 o111
N——rt N——rt
Pruning p = 4 bits: Pruning p = 4 bits:
Matching

1100111 p——> Quantized — 110]10]1]1
Event Values
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Breakdown Analysis of the RawHash Steps

Fraction of entire runtime (%)

Tool SARS-CoV-2 E.coli Yeast Green Algae Human
File I/O 0.00 0.00  0.00 0.00 0.00
Signal-to-Event 21.75 1.86  1.01 0.53 0.02
Sketching 0.74 0.06 0.04 0.03 0.00
Seeding 3.86 4.14  3.52 6.70 5.39
Chaining 73.50 9392 9542 92.43 94.46
Seeding + Chaining 7736  98.06 98.94 99.14 99.86

The entire runtime is bottlenecked by the chaining step

SAFARI 129



Required Computation Resources in Indexing

Tool Contamination SARS-CoV-2 E.coli Yeast Green Algae Human Relative Abundance
CPU Time (sec)

UNCALLED 8.72 9.00 11.08 18.62 285.88  4,148.10 4,382.38

Sigmap 0.02 0.04 8.66 24.57 449.29 36,765.24 40,926.76

RawHash 0.18 0.13 2.62 448 34.18 1,184.42 788.88
Real time (sec)

UNCALLED 1.01 1.04 2.67 7179 280.27  4,190.00 4,471.82

Sigmap 0.13 0.25 9.31 25.86 458.46 37,136.61 41,340.16

RawHash 0.14 0.10 1.70  2.06 15.82 278.69 154.68

Peak memory (GB)

UNCALLED 0.07 0.07 0.13 0.31 11.96 48.44 47.81

Sigmap 0.01 0.01 040 1.04 8.63 227.77 238.32

RawHash 0.01 0.01 0.35 0.76 5.33 83.09 152.80

The indexing step of RawHash is orders of magnitude faster than

the indexing steps of UNCALLED and Sigmap, especially for large genomes

RawHash requires larger memory space than UNCALLED
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Required Computation Resources in Mapping

Tool Contamination SARS-CoV-2 E. coli Yeast Green Algae Human Relative Abundance
CPU Time (sec)

UNCALLED 265,902.26 36,667.26 35,821.14  8,933.52 16,769.09 262,597.83 586,561.54

Sigmap 4,573.18 1,997.84 23,894.70 11,168.96 31,544.55 4,837,058.90 11,027,652.91

RawHash 3,721.62 1,832.56  8,212.17  4,906.70 25,215.23  2,022,521.48 4,738,961.77
Real time (sec)

UNCALLED 20,628.57 2,794.76  1,544.68 285.42 2,138.91 8,794.30 19,409.71

Sigmap 6,725.26 3,222.32  2,067.02  1,167.08 2,398.83 158,904.69 361,443.88

RawHash 3,917.49 1,949.53 957.13 215.68 1,804.96 65,411.43 152,280.26

Peak memory (GB)

UNCALLED 0.65 0.19 0.52 0.37 0.81 9.46 9.10

Sigmap 111.69 28.26 111.11 14.65 29.18 311.89 489.89

RawHash 4.13 4.20 4.16 4.37 11.75 52.21 55.31

The mapping step of RawHash is significantly faster than Sigmap

for all genomes, and faster than UNCALLED for small genomes

RawHash requires larger memory space than UNCALLED
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