Introduction to Real-Time
Raw Nanopore Signal Analysis:
RawHash and RawHash?2

Can Firtina
canfirtina@gmail.com

18 March 2024
Sabanci University
BIO310 - Introduction to Bioinformatics

SAFARI ETH:irich


mailto:canfirtina@gmail.com

Brief Self Introduction

= Can Firtina
o Ph.D. Candidate in SAFARI Research Group at ETH Zurich

= Research interests: Bioinformatics & Computer Architecture
o Real-time genome analysis

Similarity search in a large space of genomic data

Hardware-Algorithm co-design to accelerate genome analysis

Genome editing

Error correction
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= Get to know our group and our research
o  Group website: https://safari.ethz.ch/
o Contact me: canfirtina@gmail.com
o Website: https://cfirtina.com
o Twitter (aka X): https://twitter.com/FirtinaC
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Professor Mutlu

Onur Mutlu

Full Professor @ ETH Zurich ITET (INFK), since September 2015
Strecker Professor @ Carnegie Mellon University ECE/CS, 2009-2016, 2016-...
PhD from UT-Austin, worked at Google, VMware, Microsoft Research, Intel, AMD
https://people.inf.ethz.ch/omutlu/

omutlu@gmail.com (Best way to reach)
https://people.inf.ethz.ch/omutlu/projects.htm
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Research and Teaching in:

Computer architecture, computer systems, hardware security, bioinformatics
Memory and storage systems

Hardware security, safety, predictability

Fault tolerance

Hardware/software cooperation

Architectures for bioinformatics, health, medicine

o 0o 0o 0 o O
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SAFARI Research Group
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Four Key Current Directions

Fundamentally Secure/Reliable/Safe Architectures

Fundamentally Energy-Efficient Architectures
o Memory-centric (Data-centric) Architectures

Fundamentally Low-Latency and Predictable Architectures

Algorithms & Architectures for AI/ML, Genomics, Medicine

SAFARI .



Agenda for Today

Background
o Sequence analysis
o Raw nanopore signal analysis and real-time analysis

Enabling Fast and Accurate Real-time Analysis
o RawHash and RawHash2

Conclusion
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Sequence Analysis — Why?
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Understanding genetic variations,
species, and evolution

=3

Surveillance of disease outbreaks

Predicting the presence of
pathogens in an environment

Personalized medicine

SAFARI And, many, many other applications ...



Sequence Analysis — How?

= High throughput sequencing machines
a Quickly converts biological molecules into sequences of characters

for analysis
—F
Sequences
Biological Molecule from DNA
(e.g., DNA) (Reads)
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Sequence Comparison 1s Essential

= Analyze sequences by accurately and quickly comparing

o To each other
o To a template sequence (e.g., a reference genome)

Biological Sequences
(e.g., DNA, proteins)

A = —

= Essential to understand functionality of a sequence,
mutations, diseases...

SAFARI



A Naive Sequence Comparison Approach

= Read mapping:
o Mapping: Identifies similar regions between a pair of sequences

o Alignment: Identifies exact differences within similar regions
(costly!)

Reference

Read _
Very expensive!

O(n¥kn)
m: read length

k: no. of reads
. reference genome length
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Indexing Store certain k-mers with their positions for fast query

Seeding Determine potential matching regions (seeds)

SIEGREE T Prune uninformative/unreliable seeds

Alignment Determine the exact differences
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Sequencing Output and Challenges

Small pieces of a puzzle Large pieces of a puzzle
short reads (Illumina) long reads (Nanopore & PacBio)

‘
xl

\

Which sequencing technology is the best?

1 100-300 bp 4 500-2M bp
U low error rate (~0.1%) U high error rate (~5%)

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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Ditterent Raw Sequencing Data

lllumina Nanopore PacBio

IELE!

> ssssasnasasas

30-hour movie

Electrical Signal

Multiple images

= I .BCL/.CBCL = I .POD5 = I .BAM

SAFARI
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Nanopore Sequencing

Nanopore Sequencing: a widely used sequencing technology
« Long reads (up to >2 million nucleotides)
« Portable sequencing
 Cost-effective
« More unique features: real-time analysis

SAFARI 14



Nanopore Sequencing & Real-time Analysis

Raw Electrical Signals

Nanopore Sequencing (Real-Time) Analysis

s _ Basecalling:
CTAGATG...

H_J

Basecalled
Read

Raw Signals: Ionic current measurements generated as DNA passes through

the nanopore at a certain speed

(Real-Time) Analysis: Translating to bases or directly analyzing raw signals

Real-Time Decisions: Stopping sequencing early based on real-time analysis

SAFARI 15



Benefits of Real-Time Analysis

/. Reducing latency by overlapping the sequencing and analysis steps

Time

Sequencing

|  Analysis

!

Sequencing & Real-Time Analysis

:‘ Reduced Latency

~ Reducing sequencing time and cost by stopping sequencing early

!

Completely Sequenced Read

Reduced Sequencing Time (and Cost)

Partially Sequenced Read -

SAFARI

Sequencing is stopped early with a real-time decision
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Challenges in Real-Time Analysis

71 Rapid analysis to match the nanopore sequencer throughput

Timely decisions to stop sequencing as early as possible

@ Accurate analysis from noisy raw signal data

42

Power-efficient computation for scalability and portability

SAFARI
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Enabling Analysis From Electrical Signals

K many nucleotides (k-mers) sequenced at a time

Event: A segment of the raw signal

o Corresponds to a particular k-mer

o Abrupt signal changes show sequencing of a new k-mer
o Statistical methods can find these abrupt changes

o Event value: average of signals within an event

Observation: Identical k-mers generate similar event
values during sequencing

Event
I I, 1 I
i : i :
;3\ : flr : %
8 pcTIce 8
105.71 )
kmany B ®
nucleotides % Tillnle 5) '
Event Value

SAFARI (picoampere)



Agenda for Today

Background
o Sequence analysis
o Raw nanopore signal analysis and real-time analysis

Enabling Fast and Accurate Real-time Analysis
o RawHash and RawHash2

Conclusion

SAFARI
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i RawHash

Enabling Fast and Accurate Real-Time Analysis
of Raw Nanopore Signals for Large Genomes

Can Firtina
Nika Mansouri Ghiasi  Joel Lindegger Gagandeep Singh
Meryem Banu Cavlak Haiyu Mao Onur Mutlu

Pape;:.
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https://github.com/CMU-SAFARI/RawHash
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440

Executive Summary

r

.

Problem: Real-time analysis of nanopore raw signals is inaccurate and inefficient for
large genomes

7

\

Goal: Enable fast and accurate real-time analysis of raw signals for large genomes

7

\

Key Contributions:
1) The first hash-based mechanism that can quickly and accurately analyze raw
nanopore signals for large genomes

2) The novel Sequence Until technique can accurately and dynamically stop
the entire sequencing of all reads at once if further sequencing is not necessary

s

\

Key Results: Across 3 use cases and 5 genomes of varying sizes, RawHash provides
— 25.8x and 3.4x better average throughput compared to two state-of-the-art works
— 1.14x — 2.13x more accurate mapping results for large genomes
— Sequence Until reduces the sequencing time and cost by 15x

SAFARI 21




Existing Solutions

1.

Deep neural networks (DNNSs)

for translating signals to bases

Real-Time Analysis
Basecalling Read Mapping

- =

Less noisy analysis from
basecalled sequences

Mapping signals to reference
genomes without basecalling

Real-Time Analysis

Mapping Raw Signals

\. J

7

\

Costly and power-hungry
computational requirements

~

Raw signals contain richer
information than bases

SAFARI

Efficient analysis with better
scalability and portability
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The Problem — Mapping Raw Signals

Raw Signal

N\

l

Small Reference Genome

Large Reference Genome (Human)

Fewer candidate regions
in small genomes

Substantially larger number of regions to
check per read as the genome size increases

Accurate mapping

Problem: Probabilistic mechanisms
Oon many regions =» inaccurate mapping

High throughput

SAFARI

Problem: Distance calculation
on many regions = reduced throughput

23




The Problem — Mapping Raw Signals

Existing solutions are
inaccurate or inefficient
for large genomes

SAFARI



Outline
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Goal

Enable fast and accurate real-time analysis
of raw nanopore signals for large genomes

SAFARI
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w RawHash

The first hash-based search mechanism
to quickly and accurately map raw nanopore signals
to reference genomes

.

Sequence Until can accurately and dynamically stop
the entire sequencing run at once
if further sequencing is unnecessary

SAFARI 27




W RawHash

The first hash-based search mechanism

to quickly and accurately map raw nanopore signals

to reference genomes

&

SAFARI
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RawHash — Key Idea

Key Observation: Identical nucleotides generate similar raw signals

Raw Signal #1 Raw Signal #2
A A

Fast
0x01 >[ Match ]4 0x01

Challenge #1: Generating the same hash value for similar enough signals

Challenge #2: Accurately finding as few similar regions as possible

SAFARI 29



RawHash Overview

Indexing (Offline)

SAFARI

Reference Genome
...GCTATTACCTTAATGTG...

0 Reference-to-Event
Conversion

Raw Nanopore Signal

sy

\ 4

Signal-to-Event
Conversion

A 4

| 222 || -0091 ]| 1.18 |

@ Matching
Regions

Chaining Mapping
& Mapping Positions

(swip-jeay) buiddep
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RawHash Overview

SAFARI

Reference Genome

...GCTATTACCTTAATGTG...

Reference-to-Event

Conversion

A 4

Raw Nanopore Signal

sy

\ 4

Signal-to-Event
Conversion

A 4

2.21

-0.9 1.15

| 222 || -0091 ]| 1.18 |

31



Reference-to-Event Conversion

- K-mer model: Provides expected event values for each k-mer
- Preconstructed based on nanopore sequencer characteristics

 Use the k-mer model to convert all k-mers
of a reference genome to their expected event values

Reference Genome Expected Normalized
..GCTATTACC.. Event Values Event Values

~ A f_/\

) 4 r N\

1 [ CGCTATT { kemer 105757390 —( = (2.1

7“:« ) CTATTA 1 Model o 81.740642 —{ 3 +{-0.09

5 TATTAC " (Lookup ——{'103.170091 = +{1.15

E | (ATTACC }—{ Table) | 761.082485 —A\_ ° {1.11

o q Y - :
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Signal-to-Event Conversion

- Event detection: Identifies signal regions corresponding to
specific k-mers
- Uses statistical test (segmentation) to spot abrupt signal changes

Raw Nanopore Signal Event Value
1 . 11 1
T ' = » 2.21
=i 1 | (@]
Hwnmm . | Calculate | _Ji105.7101 1. 3 » 0.08
»l Segment > > i\ ‘ 3
Means | 11 Lo %. » 1.18
— ® o 1.14 )

» Consecutive events = consecutive k-mers
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Signal-to-Event Conversion

Can we directly match signals to each other?

SAFARI 34



RawHash Overview

Reference Genome Raw Nanopore Signal

..GCTATTACCTTAATGTG... *’JWWMWWWWW\W

\ 4
0 Reference-to-Event Signal-to-Event
Conversion Conversion
A 4 \ 4
2.21 -0.9 1.15 | 222 || -0091 ]| 1.18 |

@ Quantization Quantization

A 4

[ 28 || 6 |[ 18 | I

A 4

28 |[ 6 || 18 |
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Quantizing the Event Values

« Observation: Slight differences in raw signals from identical k-mers
- Challenge: Direct event value matching is not feasible and accurate

- Key Idea: Quantize the event values
- Enables assigning identical quantized values to similar event values

Normalized event values Quantized event values

from the same k-mer (in binary)

K—M r A N\
-0.091 * Quantize »{1]1]0]o}1
-0.084 * Quantize »{1]1]0]o}1

CTATTA

-0.09 » Quantize »{1]1]0]o}1
-0.086 * Quantize »1]1]0]0]1

SAFARI 36



RawHash Overview

Reference Genome Nanopore Raw Signal

..GCTATTACCTTAATGTG... PJWWWMMWWWW

\ 4
0[ Reference-to-Event ] Signal-to-Event
Conversion Conversion
A 4 \ 4
2.21 -0.9 1.15 | 222 || -0091 ]| 1.18 |

@ Quantization

Quantization
A 4 A 4
[ 28 |6 |[ 18 | L 28 |6 |[ 18 |
v v
@ Hashing Hashing
Y Store Hash Query ¥
(ool ——] o s [ooi]
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Hashing for Fast Similarity Search

« Each event usually represents a very small k-mer (6 to 9 characters)
- Challenge: Short k-mers are likely to appear in many locations

- Key Idea: Create longer k-mers from many consecutive events
- Key Benefit: Directly match hash values to quickly identify similarities

Consecutive Consecutive

k-mers events
_AL _A
' N\ ' Y \
CTATTA » -0.09 » Quantize m*1]1]o]o]1
TATTA > : > ' »0joj1]1]0
. C 1 _15 Qua.ntlze \ ( Pack
. . . - l
ATTACC > 1.11 :Quantlze :00101J 1l1lololilololil1lo --- ol1lolo

Hash value of { 0x400D70A4 |+— Hash

consecutive events
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RawHash Overview

Indexing (Offline)

SAFARI

Reference Genome
...GCTATTACCTTAATGTG...

0 Reference-to-Event
Conversion

Raw Nanopore Signal

sy

\ 4

Signal-to-Event
Conversion

A 4

| 222 || -0091 ]| 1.18 |

@ Matching
Regions

Chaining Mapping
& Mapping Positions

(swip-jeay) buiddep
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Real-Time Mapping using Hash-based Indexing

SAFARI

Indexing (Offline)
Reference Genome

llllllllllll v,
[
[

: Read Until : “No: Stop mapping

. or 1<
;, Run Until :

4pEEEEEEEEEEESR

...GCTATTACCTTAATGTG... —4—
v
Reference-to-Event Signal-to-Event
Conversion Conversion
A\ 4 \ 4
Quantization Quantization
v v
Hashing Hashing
y__ Store( ... . Query Y
0x01 Table I 1.0x01 |
; Chaining &
- - _ aining
Matching Positions " Mapping

Continue
Mapping?

Mapping (Real-time)
Raw Nanopore Signal

JUNYD 1XaU 3] SS320.d :SOA

\_
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W RawHash

The first hash-based search mechanism

to quickly and accurately map raw nanopore signals

to reference genomes

&

SAFARI
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RawHash

Sequence Until can accurately and dynamically stop
the entire sequencing run at once
if further sequencing is unnecessary

.

SAFARI 42



The Sequence Until Mechanism

* Problem:
- Unnecessary sequencing waste time, power and money

* Key Idea:

- Dynamically decide if further sequencing of the entire sample is
necessary to achieve high accuracy

- Stop sequencing early without sacrificing accuracy

* Potential Benefits:
- Significant reduction in sequencing time and cost

« Example real-time genome analysis use case:
- Relative abundance estimation
SAFARI
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The Sequence Until Mechanism

» Key Steps:

s

Keep the last t estimation results
Detect outliers in the results via cross-correlation of the recent t results

Absence of outliers indicates consistent results

Continuously generate relative abundance estimation after every n reads

 Further sequencing is likely to generate consistent results = Stop the sequencing

Relative

n Reads Sequenced

—> Abundance —

Estimation
Relative

2n Reads Sequenced

Estimation

Relative

txn Reads Sequenced

SAFARI

Estimation

Estimation #1

—> Abundance —

Estimation #2

—> Abundance —

Estimation #t

[

Keep
Sequencing
)
@
@
=)
2
[ Stop
Sequencing
44



Outline

Evaluation
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Evaluation Methodology

« Compared to UNCALLED
and Sigmap
- CPU baseline: AMD EPYC 7742 @2.26GHz
- 32 threads for each tool

« Use cases for real-time genome analysis:

1. Read mapping

2. Relative abundance estimation
* Benefits of Sequence Until

3. Contamination analysis

SAFARI
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Evaluation Methodology

e Evaluation metrics:

- Throughput (bases processed per second)
- Potential reduction in sequencing time and cost

- Accuracy

- Baseline: Mapping basecalled reads using minimap2
 Precision, recall, and F1 scores

« Relative abundance estimation distance to ground truth

 Datasets:

SAFARI

Organism

Reads (#) Bases (#) Genome Size

Read Mapping

Relative Abundance Estimation

DI SARS-CoV-2 1382016  594M 29,903
D2 E. coli 353317 2,365M 5M|
D3 Yeast 49,989 380M 12M|
D4  Green Algae 29,933 609M 111M|
D5 Human HGOOI 269,507  1,584M 3,117

D1-D5 2,084,762 5,531M 3,246 Ml
ontamination Analysis

D1 and D5

1,651,523 2,178M 29,903

47



Throughput

- Real-time analysis requires faster throughput than sequencer
- Throughput of a nanopore sequencer: ~450 bp/sec (data generation speed)

M RawHash [ UNCALLED M Sigmap

106k
10|15
104
103t
102k
101}

Real-Time
Analysis

No Real-Time
Analysis

Throughput (bp/sec)

D1 D2 D3 D4 D5 Contamination Relative
SARS-CoV-2 E. coli Yeast Green Algae Human Abundance

25.8x and 3.4 x better average throughput compared to
UNCALLED and Sigmap, respectively

Sigmap cannot perform real-time analysis for large genomes

SAFARI 48



Sequencing Time

» Fewer bases to sequence =
- Reduction in sequencing time and cost

[MRawHash [ UNCALLED

1.3%x

the Sequencing (#)

0.5x%

19139q SI JOMO]

1000 0.4Xx

per Read before Stopping

Average Sequenced Bases

_ 0.4%

D1 D2 D3 D4 D5
SARS-CoV-2 E. coli Yeast Green Algae Human

RawHash reduces sequencing time and cost

for large genomes up to 1.3x compared to UNCALLED

SAFARI 49



Mapping Accuracy

« Read mapping accuracy of each tool and each use case

Dataset UNCALLED Sigmap RawHash
Read Mapping
D1 Precision 0.9547  0.9929 0.9868
SARS-CoV-2 Recall 0.9910 0.5540 0.8735
Fq 09725 0.7112 0.9267
D2 Precision 0.9816  0.9842 0.9573
E. coli Recall 0.9647 0.9504 0.9009
Fq 09731 0.9670 0.9282
D3 Precision 0.9459  0.9856 0.9862
Yeast Recall 0.9366 0.9123 0.8412
Fq 09412  0.9475 0.9079
D4 Precision 0.8836  0.9741 0.9691
Green Algae Recall 0.7778  0.8987 0.7015
Fyq 0.8273  0.9349 0.8139
D5 Precision 0.4867  0.4287 0.8959
Human HGOOI  Recall 0.2379  0.2641 0.4054
Fq 0.3196  0.3268 0.5582

Dataset UNCALLED Sigmap RawHash
Relative Abundance Estimation
Precision 0.7683 0.7928 0.9484
D1-D5 Recall 0.1273 0.2739 0.3076
Fyq 0.2184  0.4072 0.4645
Contamination Analysis
Precision 0.9378 0.7856 0.8733
D1, D5 Recall 0.9910 0.5540 0.8735
Fq 0.9637 0.6498 0.8734

For Large Genomes: RawHash provides the best accuracy

in all metrics, resulting in 1.14x - 2.13x improvement in F; score

SAFARI
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Relative Abundance Estimation Accuracy

« Estimating the ratio of genomes in a sample in real-time
- Distance: Euclidean distance compared to the ground truth distance

- The dataset includes a large reference genome

Estimated Relative Abundance Ratios

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED 0.0026 0.5884 0.0615 0.1313  0.2161 0.1895
Sigmap 0.0419 04191 0.1038 0.0962  0.3390 0.0877
RawHash 0.1249 04701 0.0957 0.0629  0.2464 0.0847

RawHash provides the best relative abundance estimation

closest to the ground truth estimation

SAFARI



Real Implementation of Sequence Until

« Running RawHash by using
- RawHash (100%): The entire sample without Sequence Until

- RawHash (7%): RawHash with Sequence Until where Sequence
Until dynamically stops the entire sequencing after sequencing 7% of

the sample
Estimated Relative Abundance Ratios in 50,000 Random Reads
Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
RawHash (100%) 0.0270 0.3636 0.3062 0.1951  0.1081 N/A
RawHash + 0.0283 0.3539 0.3100 0.1946  0.1133 0.0118
Sequence Until (7%)

Sequence Until enables sequencing only 7% (~1/15)

of the entire sample with high accuracy

SAFARI



Simulating Sequence Until

* Real relative abundance results using the entire set of reads

Estimated Relative Abundance Ratios

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED 0.0026 0.5884 0.0615 0.1313  0.2161 0.1895
Sigmap 0.0419 0.4191 0.1038 0.0962  0.3390 0.0877
RawHash 0.1249 0.4701 0.0957 0.0629  0.2464 0.0847

 Simulating the benefits of Sequence Until by

- Using a random portion (25%, 10%, 1%, ...) of the sample

SAFARI

Estimated Relative Abundance Ratios

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED (25%) 0.0026 0.5890 0.0613 0.1332  0.2139 0.1910
RawHash (25%) 0.0271 0.4853 0.0920 0.0786  0.3170 0.0995
UNCALLED (10%) 0.0026 0.5906 0.0611 0.1316  0.2141 0.1920
RawHash (10%) 0.0273  0.4869 0.0963 0.0772  0.3124 0.1004
UNCALLED (1%) 0.0026  0.5750 0.0616 0.1506  0.2103 0.1836
RawHash (1%) 0.0259 0.4783 0.0987 0.0882  0.3088 0.0928
UNCALLED (0.1%) 0.0040 0.4565 0.0380 0.1910  0.3105 0.1242
RawHash (0.1%) 0.0212 0.5045 0.1120 0.0810  0.2814 0.1136
UNCALLED (0.01%) 0.0000 0.5551 0.0000 0.0000  0.4449 0.2602
RawHash (0.01%) 0.0906 0.6122  0.0000 0.0000  0.2972 0.2232
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Simulating Sequence Until

* Real relative abundance results using the entire set of reads

Estimated Relative Abundance Ratios

Tool SARS-CoV-2 E. coli Yeast Green Algae Human Distance
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED 0.0026 0.5884 0.0615 0.1313  0.2161 0.1895
Sigmap 0.0419 0.4191 0.1038 0.0962  0.3390 0.0877

UNCALLED and RawHash benefit from Sequence Until
significantly by up to 100x reductions in

sequencing time and costs

1001 SAK>-COV-Z E.COl Yeast Greem Aigae HUmMan  DISTAnce
Ground Truth 0.0929 0.4365 0.0698 0.1179  0.2828 N/A
UNCALLED (25%) 0.0026  0.5890 0.0613 0.1332  0.2139 0.1910
RawHash (25%) 0.0271 0.4853 0.0920 0.0786  0.3170 0.0995
UNCALLED (10%) 0.0026  0.5906 0.0611 0.1316  0.2141 0.1920
RawHash (10%) 0.0273  0.4869 0.0963 0.0772  0.3124 0.1004
UNCALLED (1%) 0.0026 0.5750 0.0616 0.1506  0.2103 0.1836
RawHash (1%) 0.0259 0.4783 0.0987 0.0882  0.3088 0.0928
UNCALLED (0.1%) 0.0040 0.4565 0.0380 0.1910  0.3105 0.1242
RawHash (0.1%) 0.0212 0.5045 0.1120 0.0810  0.2814 0.1136
UNCALLED (0.01%) 0.0000 0.5551 0.0000 0.0000  0.4449 0.2602
RawHash (0.01%) 0.0906 0.6122  0.0000 0.0000  0.2972 0.2232
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More in the Paper

* More Results
- Mapping time per read
- Overall computational resources required by each tool

« Peak memory usage, CPU time and real time in the
indexing and mapping steps

- Performance breakdown of the steps in RawHash

 Details of all mechanisms and configurations
- Details of the quantization and hashing mechanism
- Details of the parameter configurations

- Trade-offs between the DNN-based approaches and raw
sighal mapping approaches

SAFARI 55




RawHash

« Can Firtina, Nika Mansouri Ghiasi, Joel Lindegger, Gagandeep Singh,
Meryem Banu Cavlak, Haiyu Mao, and Onur Mutlu,
"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw
Nanopore Signals for Large Genomes"
Proceedings of the 31st Annual Conference on Intelligent Systems for Molecular
Biology (ISMB) and the 22nd European Conference on Computational Biology
(ECCB), ul 2023
[arXiv preprint]
[Source Code]

Bioinformatics, 2023, 39, i297—i307
https://doi.org/10.1093/bioinformatics/btad272

ISMB/ECCB 2023

OXFORD

RawHash: enabling fast and accurate real-time analysis of

raw nanopore signals for large genomes

Can Firtina ® "*, Nika Mansouri Ghiasi ® 7, Joel Lindegger ® ', Gagandeep Singh ® 7,
Meryem Banu Cavlak ® !, Haiyu Mao ® !, Onur Mutlu ® 1-*

'Department of Information Technology and Electrical Engineering, ETH Zurich, 8092 Zurich, Switzerland

*Corresponding author. Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
E-mail: fitinac@ethz.ch (C.F.), omutlu@ethz.ch (0.M.)
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RawHash Source Code

» Supports all major
raw signal file formats
and flow cell versions

- FASTS5, PODS5, S/BLOWS file formats

» Easy-to-use scripts
- To download all the datasets
- To reproduce all of our results

 You can write your outlier
function for Sequence Until

- Easily integrate Sequence Until

» Upcoming Feature:
- Integrating the MinKNOW API

SAFARI
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RawHash ' pubiic

main ~

’ canfirtina Test README fixes

D DD DO DO DO

extern
gitfigures
src

test
.gitignore
.gitmodules
LICENSE
Makefile
README.md

code_of_conduct.md

README.md

Overview

¥ 1branch 0 tags

<% EditPins v

Go to file

(® Unwatch 5

e9a56fe last week O 19 commits

Decoupling HDF5/POD5/SLOWS5 compilations
Updating README

Adding the SLOWS5 support

Test README fixes

PODS5 support

ZSTD sobmodule for POD5

R10 k-mer models can be parsed now as well.
Decoupling HDF5/POD5/SLOWS5 compilations

Test README fixes

Moving to multiple headers than a single one to improve adaptability....

RawHash

last month
last month

3 weeks ago
last week

4 months ago
4 months ago
last month
last month
last week

6 months ago

7

% Fork 1 - Starred 13~

About &

RawHash is the first mechanism that can
accurately and efficiently map raw
nanopore signals to large reference
genomes (e.g., a human reference
genome) in real-time without using
powerful computational resources (e.g.,
GPUs). Described by Firtina et al.
(published at
https://academic.oup.com/bioinformatics
Jarticle/39/Supplement_1/i297/7210440)

& academic.oup. joinformatics/arti...

bioinformatics nanopore seeding

segmentation  event-detection
genome-analysis  hash-tables
contamination read-mapping
relative-abundances
nanopore-sequencing
nanopore-analysis-pipeline
nanopore-reads  nanopore-data

nanopore-minion  raw-signal  rawhash

raw-nanopore-signal-analysis

Readme
GPL-3.0 license
Code of conduct
Activity

13 stars

o2+ @r B

5 watching
% 1fork

https://github.com/CMU-SAFARI/RawHash
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Sketching with Hash-based Indexing
Indexing (Offline) Mapping (Real-time)
Reference Genome Raw Nanopore Signal
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Conclusion

7

Key Contributions:
1) The first hash-based mechanism that can quickly and accurately analyze raw

nanopore signals for large genomes

2) The novel Sequence Until technique can accurately and dynamically stop
the entire sequencing of all reads at once if further sequencing is not necessary

s

Key Results: Across 3 use cases and 5 genomes of varying sizes, RawHash provides
— 25.8x and 3.4x better average throughput compared to two state-of-the-art works
— 1.14x — 2.13x more accurate mapping results for large genomes
— Sequence Until reduces the sequencing time and cost by 15x

\

p
Many opportunities for analyzing raw nanopore signals in real-time:

— Many hash-based sketching techniques can now be used for raw signals

— Indexing is very cheap: Many future use cases with the on-the-fly index construction

— We should rethink the algorithms to perform downstream analysis fully using raw signals

J

\.

SAFARI
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ISMB/ECCB 2023

i RawHash

Enabling Fast and Accurate Real-Time Analysis
of Raw Nanopore Signals for Large Genomes

Can Firtina
Nika Mansouri Ghiasi  Joel Lindegger Gagandeep Singh
Meryem Banu Cavlak Haiyu Mao Onur Mutlu

Pape;:.
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https://github.com/CMU-SAFARI/RawHash
https://academic.oup.com/bioinformatics/article/39/Supplement_1/i297/7210440

Fast and Accurate Real-Time Genome Analysis

Can Firtina, Melina Soysal, Joel Lindegger, and Onur Mutlu,
"RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals

using a Hash-based Seeding Mechanism"
Preprint on arxiv, September 2023.
[arXiv version]

[RawHash2 Source Code]

RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals

using a Hash-based Seeding Mechanism

Can Firtina Melina Soysal Joel Lindegger Onur Mutlu
ETH Ziirich
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Optimizations in RawHash2 (1)

More sensitive chaining implementation with penalty scores
o Benefits: Enables filtering dissimilar regions quickly
o Downside: Additional computations with costly log operations

Weighted mapping decisions
o Benefit #1: ‘Learned’ mapping decisions based on the weights
chosen from empirical analysis

o Benefit #2: Faster and more accurate decisions

Frequency filters
o Filters the seeds that frequently appear before chaining

o Benefits: Reduced workload on chaining without significantly
affecting accuracy

o Downside: Less sensitive mapping due to removed seeds
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Optimizations in RawHash2 (2)

New sketching techniques such as minimizers and
BLEND
o Enables integration of widely studied sketching techniques

o Benefits: Can take advantage of these techniques (e.g., reduced
storage requirements)

Support for the recent improvements in the technology
o Support for new data formats: POD5 and S/BLOWS

o Support for newer nanopore chemistry versions:
R10.4

SAFARI
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Results — Throughput

= Real-time analysis requires faster throughput than sequencer

o Throughput of a nanopore sequencer: ~450 bp/sec (data generation
speed)

[T Nanopore llRawHash2 [[] RawHash2-Minimizer [l RawHash [ll UNCALLED [ Sigmap

'S 106 ¢
7] X X 21(' X
g0 EHHE B .
2 REISHS x S IE |5l || Real-Time
= 10%¢ | | ~ o IS .
= o Analysis
g 103 ¢ 1k 5 -
2 T .
S 102 ] No
= ) -Ti
£ 10t Real Tll}‘le

A Analysis

D1 D2 D3 D4 D5 Contamination
SARS-CoV-2 E. coli Yeast Green Algae Human

2.3 X better average throughput RawHash
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Results — Accuracy

Dataset UNCALLED Sigmap | RawHash RawHash2 | RawHash2-
Minimizer
Read Mapping

D1 Precision 0.9547 0.9929 0.9868 0.9857 0.9602
SARS-CoV-2 Recall 0.9910 0.5540 0.8735 0.8842 0.7080
F 0.9725 0.7112 0.9267 0.9322 0.8150

D2 Precision 0.9816 0.9842 0.9573 0.9864 0.9761
E. coli Recall 0.9647 0.9504 0.9009 0.8934 0.7805
F 0.9731 0.9670 0.9282 0.9376 0.8674

D3 Precision 0.9459 0.9856 0.9862 0.9567 0.9547
Yeast Recall 0.9366 0.9123 0.8412 0.8942 0.7792
R 0.9412 0.9475 0.9079 0.9244 0.8581

D4 Precision 0.8836 0.9741 0.9691 0.9264 0.9198
Green Algae Recall 0.7778  0.8987 0.7015 0.8659 0.6711
F 0.8273 0.9349 0.8139 0.8951 0.7760

D5 Precision 0.4867 0.4287 0.8959 0.8830 0.8111
Human HG001 Recall 0.2379 0.2641 0.4054 0.4317 0.1862
F 0.3196 0.3268 0.5582 0.5799 0.3028

Contaminatiof
D1 and D5 Precision 0.9378 0.7856 0.8733 0.9393 0.9330

RawHash2 is more accurate than RawHash in all cases
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Results — Average Sequencing Length

Tool SARS-CoV-2  E. coli Yeast Green Algae Human Contamination
Average sequenced base length per read

UNCALLED 184.51 580.52 1,233.20 5,300.15  6,060.23 1,582.63

RawHash 513.95 1,376.14  2,565.09 4,760.59  4,773.58 742.56

RawHash2 488.46 1,234.39  1,715.31 2,077.39 3,441.43 681.94

RawHash2-Minimizer 566.42 1,763.76  2,339.41 2,891.55  4,090.68 787.82

Average sequenced number of chunks per read

Sigmap 1.01 2.11 4.14 5.76 10.40 2.06
RawHash 1.24 3.20 5.83 10.72 10.70 2.41
RawHash2 1.18 2.93 4.02 4.84 7.78 1.68
RawHash2-Minimizer 1.39 4.16 5.45 6.66 9.17 1.89

RawHash2 uses fewer bases to sequence than RawHash in all cases

RawHash2 uses the smallest humber of bases to sequence for larger genomes

SAFARI 07



Fast and Accurate Real-Time Genome Analysis

Can Firtina, Melina Soysal, Joel Lindegger, and Onur Mutlu,
"RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals

using a Hash-based Seeding Mechanism"
Preprint on arxiv, September 2023.
[arXiv version]

[RawHash2 Source Code]

RawHash2: Accurate and Fast Mapping of Raw Nanopore Signals

using a Hash-based Seeding Mechanism

Can Firtina Melina Soysal Joel Lindegger Onur Mutlu
ETH Ziirich
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https://arxiv.org/pdf/2309.05771.pdf
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https://arxiv.org/abs/2309.05771
https://github.com/CMU-SAFARI/RawHash

Agenda for Today

Background
o Sequence analysis
o Raw nanopore signal analysis and real-time analysis

Enabling Fast and Accurate Real-time Analysis
o RawHash and RawHash2

Conclusion

SAFARI
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The Future 1s Bright for Genome Analysis

= We covered various recent ideas to
o Analyze genomes in ways that were not possible before

= Enabling cost-effective, portable, fast, and accurate genome analysis has
many implications

o What are the new applications to enable with these unique benefits?

= Can we do even better?

o Understanding and modifying the sequencing process for analyzing
other types of biological data

= Many future opportunities exist
o Especially with new sequencing technologies
o Especially with new applications and use cases
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More on Real-Time Genome Analysis

Can Firtina,

"RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore
Signals for Large Genomes"

Proceedings Talk at ISMB-ECCB, Lyon, France, 25 July 2023.

[Slides (pptx) (pdf)]

[Talk Video (18 minutes]

RawHash — Key Idea

Key Observation: Identical nucleotides generate similar raw signals

Fast
i—’ Match | iowl

Challenge #1: Generating the same hash value for similar enough signals

Challenge #2: Accurately finding similar regions as few as possible
SAFARI

RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals | ISMB-ECCB 2023
2 Onur Mutlu Lectures ) —
Q 261K subscribers Analytics @ A Share =+ Save
294 views Premiered Aug 15, 2023

Talk of "RawHash: Enabling Fast and Accurate Real-Time Analysis of Raw Nanopore Signals for Large Genomes" at ISMB-ECCB 2023
Presenter: Can Firtina

Duration: 18:58 minutes

SAFARI 7
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Fast Genome Analysis...

Onur Mutlu,

'Accelerating Genome Analysis: A Primer on an Ongoing Journey"

Invited Lecture at Technion, Virtual, 26 January 2021.
[Slides (pptx) (pdf)]

[Talk Video (1 hour 37 minutes, including Q&A)]
[Related Invited Paper (at IEEE Micro, 2020)]

SAFARI

Insight: Shifting a String Helps Similarity Search

7 matches 1 mismatch

A|IN U

Onur Mutlu - Invited Lecture @Technion: Accelerating Genome Analysis: A Primer on an Ongoing Journey
566 views + Premiere d Feb 6, 2021 i 31

0 SHARE SAVE
@ ?;g?::;lslirle:r‘:res ANALYTICS EDIT VIDEO
> .
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https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.technion.ac.il/en/
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pdf
https://www.youtube.com/watch?v=r7sn41lH-4A
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf

More on Fast Genome Analysis...

Onur Mutlu,

"Accelerating Genome Analysis"

Invited Talk at the Barcelona Supercomputing Center (BSC), Barcelona, Spain, 6
September 2022.

[Slides (pptx) (pdf)]

[Talk Video (1 hour 35 minutes, including Q&A)]

[Related Invited Paper (at IEEE Micro, 2020)]

[Related Invited Paper (at Computational and Structural Biology Journal, 2022)]

A Bright Future for Intelligent Genome Analysis

Mohammed Alsel ZIIBgIDmIS ICIerIeKmS thh CAIk , Onur Mutlu
“Accelerating Analysis: A Primer on an oing Journey” IEEEM Ag st 2020.

ing Genome is: A Primer on

an ne
FPGA-Based Nea MmoryA | : of
Modern Data-lntensive Applicatio

MinION from ONT

SmidglON from ONT

Accelerating Genome Analysis - Onur Mutlu's Invited Talk at the Barcelona Supercomputing Center

@ Onur Mutlu Lectures Editvideo /> Share =+ Save
«¥b>  36.6K subscribers
023

imer on an Ongoing Journey

nnnnnnnnnnnnnn (including Q8A)
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https://people.inf.ethz.ch/omutlu/pub/onur-BSC-Seminar-AcceleratingGenomeAnalysis-Sep-6-2022.pptx
https://www.bsc.es/research-and-development/research-seminars/bsc-rs-accelerating-genome-analysis
https://people.inf.ethz.ch/omutlu/pub/onur-BSC-Seminar-AcceleratingGenomeAnalysis-Sep-6-2022.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-BSC-Seminar-AcceleratingGenomeAnalysis-Sep-6-2022.pdf
https://www.youtube.com/watch?v=tVpg0XqU_c4
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_ieeemicro20.pdf
https://arxiv.org/abs/2205.07957

More on Accelerating Genome Analysis

Can Firtina,

"Enabling Accurate, Fast, and Memory-Efficient Genome Analysis via Efficient
and Intelligent Algorithms"

Talk at UC Berkeley, Berkeley, CA, United States, May 27, 2022.

[Slides (pptx) (pdf)]

[Talk Video (1 hour 6 minutes)]

Enabling Accurate, Fast, and Memory-
Efficient Genome Analysis via Efficient

and Intelligent Algorithms

Can Firtina
canfirtina@gmail.com

27 May 2022
Invited Seminar Talk at UC Berkeley

SAFARI ETH:zurich

QLim@0

> Pl ) 031/10633

Enabling Accurate, Fast, and Memory-Efficient Genome Analysis - Can Firtina (Talk at UC Berkeley)

Onur Mutlu Lectures

= 3 ; g Cli =
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https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pdf
https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pdf
https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pptx
https://canfirtina.com/assets/slides/2022-05-27-firtina-UCB-Seminar-EnablingFastEfficientGenomeAnalysis.pdf
https://www.youtube.com/watch?v=5C3FdBXrSlg

Accelerating Genome Analysis [pac 2023

Onur Mutlu and Can Firtina,

"Accelerating Genome Analysis via Algorithm-Architecture Co-Design"
Invited Special Session Paper in Proceedings of the 60th Design Automation
Conference (DAC), San Francisco, CA, USA, July 2023.

[Slides (pptx) (pdf)]

[Talk Video (38 minutes, including Q&A)]

[Related Invited Paper]

[arXiv version]

Accelerating Genome Analysis
via Algorithm-Architecture Co-Design

Onur Mutlu Can Firtina
ETH Ziirich

SAFARI https://ieeexplore.ieee.org/document/10247887 7>


https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://people.inf.ethz.ch/omutlu/pub/AcceleratingGenomeAnalysis_dac23.pdf
https://people.inf.ethz.ch/omutlu/pub/onur-Technion-AcceleratingGenomeAnalysis-Jan-26-2021-final.pptx
https://www.dac.com/
https://www.dac.com/
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pptx
https://people.inf.ethz.ch/omutlu/pub/onur-DAC2023-SpecialSession-AcceleratingGenomeAnalysis-July-11-2023.pdf
https://www.youtube.com/watch?v=osg9su2FDr8
https://ieeexplore.ieee.org/document/10247887
https://arxiv.org/pdf/2305.00492.pdf

Genomics Course (Spring 2024)

= Spring 2024 Edition:
o https://safari.ethz.ch/projects and seminars/spring2024
/doku.php?id=bioinformatics
- FaII 2023 Edition: species, evolution, ... undancicasample

o https://safari.ethz.ch/projects and seminars/fall2023/do s
ku.php?id=bioinformatics ‘-’Em

ce of disease outbreaks Developing personalized medicine
Watch on (& YouTube

Understanding genetic variatio edicting the presence and relative

And, many, many other applications ... e

u YOUtu be LiveStrea m S ri n 20 24 : ® Complete Lecture Playlist (Fall 2023):

o https://youtube.com/playlist?list=PL5Q2s0XY2Zi UT4zTi
LXxRmK zbgz6M93Z

\ c
= Project course *

o Taken by Bachelor's/Master’s students L’Sii.’if“ﬁél‘i‘.’;‘:"‘“""“ Liﬂiﬂﬁe";?."J?Sfo”.fif."n“;ia'?%?e
2 Genomics lectures Tty 20 - @
o Hands-on research exploration ; ® . e
o Many research readings e s D o BRSSO

Watch on (@ YouTube
And, many, many other applications ... ¥

Spring 2024 Schedule

Week Date Livestream Meeting
W1 | 26.02 YoulB Live L1: P&S Course Introduction & Scope
Mon. (PDF) [P](PPT)

w2 04.03 Youl™ Premiere L2: Introduction to Genome Analysis

https://www.youtube.com/onurmutlulectures s

Thu.
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https://safari.ethz.ch/projects_and_seminars/spring2024/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2023/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2023/doku.php?id=bioinformatics
https://safari.ethz.ch/projects_and_seminars/fall2023/doku.php?id=bioinformatics
https://youtube.com/playlist?list=PL5Q2soXY2Zi_UT4zTiLxRmK_zbgz6M93Z
https://youtube.com/playlist?list=PL5Q2soXY2Zi_UT4zTiLxRmK_zbgz6M93Z
https://youtube.com/playlist?list=PL5Q2soXY2Zi_UT4zTiLxRmK_zbgz6M93Z
https://www.youtube.com/onurmutlulectures

Introduction to Real-Time
Raw Nanopore Signal Analysis:
RawHash and RawHash?2

Can Firtina
canfirtina@gmail.com

18 March 2024
Sabanci University
BIO310 - Introduction to Bioinformatics
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Challenges in Read Mapping

= Need to find many mappings of each read
= Need to tolerate variances/sequencing errors in each read

= Need to map each read very fast (i.e., performance is
important, life critical in some cases)

= Need to map reads to both forward and reverse strands
—)—

_(—

https://www.bioinformaticsalgorithms.org/bioinformatics-chapter-1 79
SAFARI 5’



Analysis 1s Bottlenecked in Read Mapping!!

Human
genome

32 CPU hours
on a 48-core processor

Human whole
genomes
at 30x coverage

in about 2 days

Illumina NovaSeq 6000 ‘

Read Mapping = Others

71%

SA FARI Goyal+, "Ultra-fast next generation human genome sequencing data processing using DRAGENTM 80
bio-IT processor for precision medicine”, Open Journal of Genetics, 2017.



https://www.scirp.org/journal/paperinformation.aspx?paperid=74603
https://www.scirp.org/journal/paperinformation.aspx?paperid=74603

A Tsunami of Sequencing Data

Efficient indexing of k-mer presence and abundance in sequencing datasets

A Tera-scale increase in sequencing production in the past 25 years

Genes & Operons
Bacterial genomes
Human genome
Human microbiome
50K Microbiomes

1990
1995
2000
2005
2015

Kilo = 1,000

Mega = 1,000,000

Giga = 1,000,000,000

Tera = 1,000,000,000,000
Peta = 1,000,000,000,000,000

what is expected for the next 15 years ? (a Giga?)

200K Microbiomes
1M Microbiomes
Earth Microbiome

2020
2025
2030

Exa= 1,000,000,000,000,000,000
= Source:
Zetta = 1,000,000,000,000,000,000,000 i
@kyrpides
Yotta = 1,000,000,000,000,000,000,000,000

Rayan Chikhi, VanBUG seminar 2020

SAFARI
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Solving the Puzzle

.FASTA file .FASTQ file

w
Reference / * .

of

genome / o .
Reads :

https://www.pacb.com/smrt-science/smrt-sequencing/hifi-reads-for-highly-accurate-long-read-sequencing/
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Obtaining the Human Reference Genome

GRCh38.p13

Description: Genome Reference Consortium Human Build 38
patch release 13 (GRCh38.p13)

Organism name: Homo sapiens (human)

Date: 2019/02/28

3,099,706,404 bases

Compressed .fna file (964.9 MB)
https://www.ncbi.nlm.nih.gov/assembly/GCF 000001405.39

>NC_000001.11 Homo sapiens chromosome 1, GRCh38.p13 Primary Assembly

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
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https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=9606&lvl=3&lin=f&keep=1&srchmode=1&unlock
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39

Obtaining .FASTQ Files

= https://www.ncbi.nim.nih.gov/sra/ERR240727

« NCBI Resources (¥ How To (¥

SAFA

SRA |SRA vl

Advanced

0 COVID-19 is an emerging, rapidly evolving situation.
Public health information (CDC) | Research information (NIH) | SARS-CoV-2 data (NCBI) | Prevention and treatment information (HH

Full + Send to: =

ERX215261: Whole Genome Sequencing of human TSI NA20754
1 ILLUMINA (lllumina HiSeq 2000) run: 4.1M spots, 818.7M bases, 387.2Mb downloads

Design: lllumina sequencing of library 6511095, constructed from sample accession SRS001721 for study accession SRP000540. This is part of an
lllumina multiplexed sequencing run (9340_1). This submission includes reads tagged with the sequence TTAGGCAT.

Submitted by: The Wellcome Trust Sanger Institute (SC)

Study: Whole genome sequencing of (TSI) Toscani in Italia HapMap population
PRJNA33847 « SRP000540 * All experiments * All runs

Sample: Coriell GM20754
SAMNO00001273 » SRS001721 « All experiments « All runs
Organism: Homo sapiens

Library:
Name: 6511095
Instrument: lllumina HiSeq 2000
Strategy: WGS
Source: GENOMIC
Selection: RANDOM
Layout: PAIRED
Construction protocol: Standard

Runs: 1 run, 4.1M spots, 818.7M bases, 387.2Mb

Run # of Spots # of Bases Size Published
ERR240727 4,093,747 818.7M 387.2Mb 2013-03-22
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https://www.ncbi.nlm.nih.gov/sra/ERR240727

Read Mapping

Map reads to a known reference genome with some
minor differences allowed

DNA Sample Reads Referntejganame
“chemical format” “text format” “text grgmat”
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Read Mapping Algorithms: Two Styles

Hash based seed-and-extend (hash table, suffix array, suffix tree)
o Index the “k-mers” in the genome into a hash table (pre-processing)

o When searching a read, find the location of a k-mer in the read; then
extend through alignment

a More sensitive (can find all mapping locations), but slow
o Requires large memory; this can be reduced with cost to run time

Burrows-Wheeler Transform & Ferragina-Manzini Index based
aligners

o BWT is a compression method used to compress the genome index

o Perfect matches can be found very quickly, memory lookup costs
increase for imperfect matches

o Reduced sensitivity
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The Need for Speed

Moore's Law

D
8 8

National Human Genome
Research Institute

genome.gov/sequencingcosts

me (hours)

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 jurwer

CPU

(-

Did we realize the need for
faster genome analysis?

Mapper

e RMAP

e DBowtie
BWA

e GSNAP
SMALT

e LAST
SNAP

o Bowtie2
Subread

o HISAT2

® mnimap2

Before 2013

2013 and later

Year of publication

Alser+, "Technology dictates algorithms: Recent developments in read alignment",

SAFARI Genome Biology, 2021
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https://arxiv.org/abs/2003.00110

Sequence Alignment in Unavoidable

» Quadratic-time dynamic-
programming algorithm WHY?! INIEITIHIEIRILIAINIDISI

Enumerating all possible prefixes

S

W
NETHERLANDS x SWITZERLAND I

¥ NETHERLANDS x S L 1

NETHERLANDS x SW 11T ete
NETHERLANDS x SWI E| o o}
NETHERLANDS x SWIT S 1 |
NETHERLANDS x SWITZ L o of
NETHERLANDS x SWITZE A l 1
NETHERLANDS x SWITZER N ¥
NETHERLANDS x SWITZERL 5
NETHERLANDS x SWITZERLA
NETHERLANDS x SWITZERLAN

NETHERLANDS x SWITZERLAND
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Sequence Alignment in Unavoidable

» Quadratic-time dynamic-

programming algorithm N[ E[T[H[E[R[L[A[N]D]S
_ _ _ 0|1/2|3|4|5/6|7|8]|9/10[11
Enumerating all possible prefixes Sl 1121312151678 9 1010
W(2|/2/23|4|5|6|7/8|9]|10/11
1/3/3|3|3|4(5/6|7|8/|9/10[11
» Data dependencies limit the Tl4/4/4/3/4/5/6 78 91011
computation parallelism 21515/5/4/4)5]6]7]8]9]10}11
_ E|6|(6|(5/5/5/4|5|/6[7[8|910
Processing row (or column) after another rl 7171 6lelelsi@lslel718lo
L|8|8|7|7|7|6|5|4/5/6|7]|8
Al9|9/8|8|8|7|6|5/4/5|6]|7
» Entire matrix is computed N110/9191919181716]5 4] 5
. D|(11/10/10|10(10|/9 |8 |7 |6 | 5| 4§ 5
even though strings can be
dissimilar.
Number of differences is computed only at the backtraking step.
89
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Metagenomics Analysis

Reads from different unknown donors at sequencing
time are mapped to many known reference genomes

genetic material recovered s <
directly from environmental
samples Reads Reference
“text format” Database
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Genomics vs. Metagenomics

-

»

Genomics s .+
o~ S

Q\ ‘ e
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-

Metagenomics
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g
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Existing Solutions — Real-time Basecalling

Deep neural networks (DNNSs) for translating signals to bases

Nanopore sequencing Raw Signal Real-time Analysis
S Basecalling Read mapping

DNNSs provide less noisy analysis from basecalled sequences

Costly and power-hungry computational requirements
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The Problem

Real-time Analysis
Basecalling Read mapping

-

(Costly and energy-hungry\
computations to basecall
each read:
Portable sequencing becomes
challenging with

The existing solutions are ineffective for large genomes

Real-time Analysis
Signal mapping

kresource-constrained devices )

SAFARI

Larger number of reference
regions cannot be handled
accurately or quickly,
rendering existing solutions
ineffective for large
genomes
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Applications of Read Until

Depletion: Reads mapping to a particular reference genome is ejected
« Removing contaminated reads from a sample

» Relative abundance estimation

 Controlling low/high-abundance genomes in a sample

 Controlling the sequencing of depth of a genome

Enrichment: Reads not mapping to a particular reference genome is ejected
« Purifying the sample to ensure it contains only the selected genomes

* Removing the host genome (e.g., human) in contamination analysis
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Applications of Run Until and Sequence Until

Run Until: Stopping the sequencing without informative decision from analysis

 Stopping when reads reach to a particular depth of coverage

 Stopping when the abundance of all genomes reach a particular threshold

Sequence Until: Stopping the sequencing based on information decision

« Stopping when relative abundance estimations do not change substantially
(for high-abundance genomes)

 Stopping when finding that the sample is contaminated with a particular set
of genomes
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Details: Quantizing the Event Values

« Observation: Identical k-mers generate similar raw signals
- Challenge: Their corresponding event values can be slightly different

« Key Idea: Quantize the event values
- To enable assigning the same quantized value to the similar event values

Slightly Different

(Normalized)
/ Event Values

-0.091 in binary: -0.084 in binary:
1joj1p1jrjrjojryrjojayjry .. 1joj1j1§j1j1jo0y1j1jo0j11}o0
\ J \ & J
4 4
Most significant Q = 9 bits: Most significant Q = 9 bits:
110 o111 110 o111
N——rt N——rt
Pruning p = 4 bits: Pruning p = 4 bits:
Matching

1100111 p——> Quantized — 110]10]1]1
Event Values
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Average Sequenced Bases and Chunks

Tool SARS-CoV-2 E. coli Yeast Green Algae  Human
Average sequenced base length per read
UNCALLED 184.51 580.52 1,233.20 5,300.15 6,060.23
RawHash 51395 1,376.14 2,565.09 4,760.59 4,773.58
Average sequenced number of chunks per read
Sigmap 1.01 2.11 4.14 5.76 10.40
RawHash 1.24 3.20 5.83 10.72 10.70

RawHash reduces sequencing time and cost for large genomes
up to 1.3x compared to UNCALLED

Although Sigmap processes less number of chunks than RawHash, it fails to

provide real-time analysis capabilities for large genomes
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Breakdown Analysis of the RawHash Steps

Fraction of entire runtime (%)

Tool SARS-CoV-2 E.coli Yeast Green Algae Human
File I/O 0.00 0.00  0.00 0.00 0.00
Signal-to-Event 21.75 1.86  1.01 0.53 0.02
Sketching 0.74 0.06 0.04 0.03 0.00
Seeding 3.86 4.14  3.52 6.70 5.39
Chaining 73.50 9392 9542 92.43 94.46
Seeding + Chaining 7736  98.06 98.94 99.14 99.86

The entire runtime is bottlenecked by the chaining step
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Required Computation Resources in Indexing

Tool Contamination SARS-CoV-2 E.coli Yeast Green Algae Human Relative Abundance
CPU Time (sec)

UNCALLED 8.72 9.00 11.08 18.62 285.88  4,148.10 4,382.38

Sigmap 0.02 0.04 8.66 24.57 449.29 36,765.24 40,926.76

RawHash 0.18 0.13 2.62 448 34.18 1,184.42 788.88
Real time (sec)

UNCALLED 1.01 1.04 2.67 7179 280.27  4,190.00 4,471.82

Sigmap 0.13 0.25 9.31 25.86 458.46 37,136.61 41,340.16

RawHash 0.14 0.10 1.70  2.06 15.82 278.69 154.68

Peak memory (GB)

UNCALLED 0.07 0.07 0.13 0.31 11.96 48.44 47.81

Sigmap 0.01 0.01 040 1.04 8.63 227.77 238.32

RawHash 0.01 0.01 0.35 0.76 5.33 83.09 152.80

The indexing step of RawHash is orders of magnitude faster than

the indexing steps of UNCALLED and Sigmap, especially for large genomes

RawHash requires larger memory space than UNCALLED
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Required Computation Resources in Mapping

Tool Contamination SARS-CoV-2 E. coli Yeast Green Algae Human Relative Abundance
CPU Time (sec)

UNCALLED 265,902.26 36,667.26 35,821.14  8,933.52 16,769.09 262,597.83 586,561.54

Sigmap 4,573.18 1,997.84 23,894.70 11,168.96 31,544.55 4,837,058.90 11,027,652.91

RawHash 3,721.62 1,832.56  8,212.17  4,906.70 25,215.23  2,022,521.48 4,738,961.77
Real time (sec)

UNCALLED 20,628.57 2,794.76  1,544.68 285.42 2,138.91 8,794.30 19,409.71

Sigmap 6,725.26 3,222.32  2,067.02  1,167.08 2,398.83 158,904.69 361,443.88

RawHash 3,917.49 1,949.53 957.13 215.68 1,804.96 65,411.43 152,280.26

Peak memory (GB)

UNCALLED 0.65 0.19 0.52 0.37 0.81 9.46 9.10

Sigmap 111.69 28.26 111.11 14.65 29.18 311.89 489.89

RawHash 4.13 4.20 4.16 4.37 11.75 52.21 55.31

The mapping step of RawHash is significantly faster than Sigmap

for all genomes, and faster than UNCALLED for small genomes

RawHash requires larger memory space than UNCALLED

SAFARI
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Average Mapping Time per Read

[MRawHash [ UNCALLED [ Sigmap

o
S

| | | |
| | | |
| | | |
| | | |
| l | I
| | | I
| | | |
| | | |
| | | |
| | | |
| | | |
| l l I
| | | I
| | | |
| | | |
| | | |
| l | I
| l | I
| | | I

D1 D2 D3 D4 D5 Contamination Relative
SARS-CoV-2 E. coli Yeast Green Algae Human Abundance

The mapping step of RawHash is significantly faster than Sigmap
for all genomes, and faster than UNCALLED for small genomes
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Parameter Configurations

Tool Contamination SARS-CoV-2 E. coli Yeast Green Algae Human Relative Abundance
RawHash -x viral -t 32 -x viral -t 32 -x sensitive -t 32 -x sensitive -t 32  -x fast-t32  -x fast -t 32 -x fast -t 32
UNCALLED map -t 32
Sigmap -m -t 32
Minimap2 -X map-ont -t 32

Preset (-x) Corresponding parameters Usage

viral -5-q9-13 Viral genomes

sensitive -6-q9-13 Small genomes (i.e., < S0M bases)

fast -7-q9-13 Large genomes (i.e., > SOM bases)
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Versions

Tool Version Link to the Source Code

RawHash 0.9 https://github.com/CMU-SAFARI/RawHash/tree/8042b1728e352a28fcc79c2efd80c8b631fe7bac
UNCALLED 2.2 https://github.com/skovaka/UNCALLED/tree/74a5d4e5b5d02fb31d6e88926e8a0896dc3475ch
Sigmap 0.1 https://github.com/haowenz/sigmap/tree/c9a40483264c9514587a36555b5af48d3f054f6f
Minimap2 2.24 https://github.com/1h3/minimap2/releases/tag/v2.24
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